數(shù)的分解教案最新5篇

時間:2023-11-03 作者:Trick 備課教案

教案需要考慮到學(xué)生的背景和先前知識,教案的適切性可以通過使用不同的教學(xué)策略和教學(xué)工具來增強,范文社小編今天就為您帶來了數(shù)的分解教案最新5篇,相信一定會對你有所幫助。

數(shù)的分解教案最新5篇

數(shù)的分解教案篇1

一、活動目標(biāo)

1、引導(dǎo)幼兒通過動手操作,感知8的分解組成,掌握8的7種分法。

2、在感知數(shù)的分解組成的基礎(chǔ)上,掌握數(shù)組成的遞增、遞減規(guī)律和互相交換的規(guī)律。

3、發(fā)展幼兒觀察力、分析力,培養(yǎng)幼兒對數(shù)學(xué)的興趣。

二、教學(xué)重點、難點

重點:感知整體與部分的關(guān)系,學(xué)習(xí)并記錄8的7種分法。

難點:總結(jié)歸納8以內(nèi)數(shù)的分解和組成規(guī)律。

三、活動準(zhǔn)備

1、8以內(nèi)數(shù)的分解和組成教學(xué)視頻一個。

2、若干小矮人圖片和小房子。

3、數(shù)字卡片若干。

四、活動過程

(一)、問答形式復(fù)習(xí)以前學(xué)過的數(shù)的組成和分解。如:

師:小朋友們,咱們之前學(xué)過7的分解組成,我們來復(fù)習(xí)一下好不好?我來問,你來答,7可以分成3和幾?孩子:你來問,我來答,7可以分成3和4。(幼兒邊拍手邊回答)

(二)、學(xué)習(xí)8的組成和分解。

1、故事導(dǎo)入。教師:在一座茂密的`森林里,住著一位美麗的白雪公主,今天,白雪公主非常高興,因為有小客人要到森林里作客,你們看,他們來了。

提問:

?1〉來了幾位小矮人?

?2〉8位小矮人要住進(jìn)兩座小房子里,該怎么住呢?引出課題《8的分解與組成》。

2、幼兒動手操作,把8張小矮人卡片擺一擺,記一記來思考8的多種分法,幫助白雪公主做出不同的安排方法。

?1〉把幼兒分成2組,每3人一組。

?2〉每組請一名幼兒做記錄,其余幼兒動手操作。

?3〉教師根據(jù)幼兒操作情況總結(jié)8的7種分法:

8 8 8 8

∧ ∧ ∧ ∧

1 7 2 6 3 5 4

7 1 6 2 5 3 4

3、引導(dǎo)幼兒觀察8的分解式,發(fā)現(xiàn)總結(jié)8以內(nèi)數(shù)分解組成規(guī)律:把一個數(shù)分成兩部分,如果一部分增加1,另外一部分就減少1,即遞增遞減規(guī)律。

8

1 7

2 6

3 5

4 4

5 3

6 2

7 1

(三)、鞏固練習(xí)

1、卡片填數(shù)

8 8 8

∧ ∧ ∧ ………

5()7()5()

3、8以內(nèi)數(shù)的分解與組成教學(xué)視頻。

(四)活動延伸

1、火車開了。游戲規(guī)則:幼兒每人一張數(shù)字卡片,找和自己卡片上數(shù)字合起來是8的小朋友手拉手一起上火車,邊唱《火車開了》歌曲邊出活動室。

五、教學(xué)反思

本節(jié)課我從幼兒已有知識出發(fā),結(jié)合幼兒的生活實際和年齡特點,創(chuàng)設(shè)生動有趣的故事情境,讓幼兒通過擺一擺、記一記、說一說等生動有趣的活動,自主嘗試探索,學(xué)習(xí)并掌握了8的7種分法,幼兒能用較為清楚的語言表達(dá)分與合的過程,在此基礎(chǔ)上,還發(fā)現(xiàn)和總結(jié)8以內(nèi)數(shù)的分解和組成規(guī)律。活動中,幼兒表現(xiàn)出濃厚的興趣,又體驗到了成功的喜悅。不足的是在最后的游戲環(huán)節(jié)里,忙亂中忘了讓幼兒自己去找“好朋友”;個別幼兒動手能力和參與意識較差,不愿與同伴交流,還需加強訓(xùn)練。

數(shù)的分解教案篇2

教學(xué)目標(biāo)

1.知識與技能

了解因式分解的意義,以及它與整式乘法的關(guān)系.

2.過程與方法

經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

3.情感、態(tài)度與價值觀

在探索因式分解的方法的活動中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的'能力,培養(yǎng)積極的進(jìn)取意識,體會數(shù)學(xué)知識的內(nèi)在含義與價值.

重、難點與關(guān)鍵

1.重點:了解因式分解的意義,感受其作用.

2.難點:整式乘法與因式分解之間的關(guān)系.

3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.

教學(xué)方法

采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

教學(xué)過程

一、創(chuàng)設(shè)情境,激趣導(dǎo)入

?問題牽引】

請同學(xué)們探究下面的2個問題:

問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕?

問題2:當(dāng)a=102,b=98時,求a2-b2的值.

二、豐富聯(lián)想,展示思維

探索:你會做下面的填空嗎?

1.ma+mb+mc=()();

2.x2-4=()();

3.x2-2xy+y2=()2.

?師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.

三、小組活動,共同探究

?問題牽引】

(1)下列各式從左到右的變形是否為因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括號里,填上適當(dāng)?shù)捻棧沟仁匠闪?

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、隨堂練習(xí),鞏固深化

課本練習(xí).

?探研時空】計算:993-99能被100整除嗎?

五、課堂總結(jié),發(fā)展?jié)撃?/p>

由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

1.什么叫因式分解?

2.因式分解與整式運算有何區(qū)別?

六、布置作業(yè),專題突破

選用補充作業(yè)。

數(shù)的分解教案篇3

一、運用平方差公式分解因式

教學(xué)目標(biāo)1、使學(xué)生了解運用公式來分解因式的意義。

2、使學(xué)生理解平方差公式的意義,弄清平方差公式的形式和特點;使學(xué)生知道把乘法公式反過來就可以得到相應(yīng)的因式分解。

3、掌握運用平方差公式分解因式的方法,能正確運用平方差公式把多項式分解因式(直接用公式不超過兩次)

重點運用平方差公式分解因式

難點靈活運用平方差公式分解因式

教學(xué)方法對比發(fā)現(xiàn)法課型新授課教具投影儀

教師活動學(xué)生活動

情景設(shè)置:

同學(xué)們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來的?

(學(xué)生或許還有其他不同的解決方法,教師要給予充分的肯定)

新課講解:

從上面992-1=(99+1)(99-1),我們?nèi)菀卓闯?這種方法利用了我們剛學(xué)過的哪一個乘法公式?

首先我們來做下面兩題:(投影)

1.計算下列各式:

(1)(a+2)(a-2)=;

(2)(a+b)(a-b)=;

(3)(3a+2b)(3a-2b)=.

2.下面請你根據(jù)上面的算式填空:

(1)a2-4=;

(2)a2-b2=;

(3)9a2-4b2=;

請同學(xué)們對比以上兩題,你發(fā)現(xiàn)什么呢?

事實上,像上面第2題那樣,把一個多項式寫成幾個整式積的形式叫做多項式的因式分解。(投影)

比如:a2–16=a2–42=(a+4)(a–4)

例題1:把下列各式分解因式;(投影)

(1)36–25x2;(2)16a2–9b2;

(3)9(a+b)2–4(a–b)2.

(讓學(xué)生弄清平方差公式的形式和特點并會運用)

例題2:如圖,求圓環(huán)形綠化區(qū)的面積

練習(xí):第87頁練一練第1、2、3題

小結(jié):

這節(jié)課你學(xué)到了什么知識,掌握什么方法?

教學(xué)素材:

a組題:

1.填空:81x2-=(9x+y)(9x-y);=

利用因式分解計算:=。

2、下列多項式中能用平方差公式分解因式的是()(a)(b)(c)(d)3.把下列各式分解因式

(1)1-16a2(2)9a2x2-b2y2

(3).49(a-b)2-16(a+b)2

b組題:

1分解因式81a4-b4=

2若a+b=1,a2+b2=1,則ab=;

3若26+28+2n是一個完全平方數(shù),則n=.

由學(xué)生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學(xué)生)補充.

學(xué)生回答1:

992-1=99×99-1=9801-1

=9800

學(xué)生回答2:992-1就是(99+1)(99-1)即100×98

學(xué)生回答:平方差公式

學(xué)生回答:

(1):a2-4

(2):a2-b2

(3):9a2-4b2

學(xué)生輕松口答

(a+2)(a-2)

(a+b)(a-b)

(3a+2b)(3a-2b)

學(xué)生回答:

把乘法公式

(a+b)(a-b)=a2-b2

反過來就得到

a2-b2=(a+b)(a-b)

學(xué)生上臺板演:

36–25x2=62–(5x)2

=(6+5x)(6–5x)

16a2–9b2=(4a)2–(3b)2

=(4a+3b)(4a–3b)

9(a+b)2–4(a–b)2

=[3(a+b)]2–[2(a–b)]2

=[3(a+b)+2(a–b)]

[3(a+b)–2(a–b)]

=(5a+b)(a+5b)

解:352π–152?

=π(352–152)

=(35+15)(35–15)?

=50×20?

=1000π(m2)

這個綠化區(qū)的面積是

1000πm2

學(xué)生歸納總結(jié)

數(shù)的分解教案篇4

第十五章 整式的乘除與因式分解

根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).

15.1.2 整式的`加減

(3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

四、提高練習(xí):

1、已知a=a2+b2-c2,b=-4a2+2b2+3c2,并且a+b+c=0,問c是什么樣的多項式?

2、設(shè)a=2x2-3x+2-x+2,b=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且b-2a=a,求a的值。

3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應(yīng)點如圖:

試化簡:│a│-│a+b│+│c-a│+│b+c│

小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進(jìn)行運算。

作 業(yè):課本p14習(xí)題1.3:1(2)、(3)、(6),2。

?課堂感悟與探究》

數(shù)的分解教案篇5

教材分析

因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的.思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

學(xué)情分析

通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。

教學(xué)目標(biāo)

1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

2、通過公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。

3、能運用提公因式法、公式法進(jìn)行綜合運用。

4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

教學(xué)重點和難點

重點: 靈活運用平方差公式進(jìn)行分解因式。

難點:平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。