高中優(yōu)秀教案數(shù)學(xué)5篇

時(shí)間:2023-01-18 作者:Gourmand 備課教案

制定教案是為了讓我們?cè)诮虒W(xué)的時(shí)候有清晰的思路,教案在編寫的過(guò)程中,你們一定要考慮講授內(nèi)容要點(diǎn),下面是范文社小編為您分享的高中優(yōu)秀教案數(shù)學(xué)5篇,感謝您的參閱。

高中優(yōu)秀教案數(shù)學(xué)5篇

高中優(yōu)秀教案數(shù)學(xué)篇1

[學(xué)習(xí)目標(biāo)]

(1)會(huì)用坐標(biāo)法及距離公式證明cα+β;

(2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由cα+β推導(dǎo)cα—β、sα±β、tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

(3)掌握公式cα±β、sα±β、tα±β,并利用簡(jiǎn)單的三角變換,解決求值、化簡(jiǎn)三角式、證明三角恒等式等問(wèn)題。

[學(xué)習(xí)重點(diǎn)]

兩角和與差的正弦、余弦、正切公式

[學(xué)習(xí)難點(diǎn)]

余弦和角公式的推導(dǎo)

[知識(shí)結(jié)構(gòu)]

1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過(guò)程見課本)

2、通過(guò)下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

4、關(guān)于公式的正用、逆用及變用

高中優(yōu)秀教案數(shù)學(xué)篇2

一、預(yù)習(xí)目標(biāo)

預(yù)習(xí)《平面向量應(yīng)用舉例》,體會(huì)向量是一種處理幾何問(wèn)題、物理問(wèn)題等的工具,建立實(shí)際問(wèn)題與向量的聯(lián)系。

二、預(yù)習(xí)內(nèi)容

閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問(wèn)題、物理問(wèn)題。另外,在思考一下幾個(gè)問(wèn)題:

1、例1如果不用向量的方法,還有其他證明方法嗎?

2、利用向量方法解決平面幾何問(wèn)題的“三步曲”是什么?

3、例3中,

⑴為何值時(shí),|f1|最小,最小值是多少?

⑵|f1|能等于|g|嗎?為什么?

三、提出疑惑

同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容。

課內(nèi)探究學(xué)案

一、學(xué)習(xí)內(nèi)容

1、運(yùn)用向量的有關(guān)知識(shí)(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問(wèn)題。

2、運(yùn)用向量的有關(guān)知識(shí)解決簡(jiǎn)單的物理問(wèn)題。

二、學(xué)習(xí)過(guò)程

探究一:

(1)向量運(yùn)算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會(huì)?

(2)舉出幾個(gè)具有線性運(yùn)算的幾何實(shí)例。

例1、證明:平行四邊形兩條對(duì)角線的平方和等于四條邊的平方和。

已知:平行四邊形abcd。

求證:

試用幾何方法解決這個(gè)問(wèn)題,利用向量的方法解決平面幾何問(wèn)題的“三步曲”?

(1)建立平面幾何與向量的聯(lián)系,

(2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,

(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系。

例2,如圖,平行四邊形abcd中,點(diǎn)e、f分別是ad、dc邊的中點(diǎn),be、bf分別與ac交于r、t兩點(diǎn),你能發(fā)現(xiàn)ar、rt、tc之間的關(guān)系嗎?

探究二:兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力。在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力。這些力的問(wèn)題是怎么回事?

例3,在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?

請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問(wèn)題,思考下面的問(wèn)題:

⑴為何值時(shí),|f1|最小,最小值是多少?

⑵|f1|能等于|g|嗎?為什么?

例4如圖,一條河的兩岸平行,河的寬度m,一艘船從a處出發(fā)到河對(duì)岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問(wèn)行駛航程最短時(shí),所用的時(shí)間是多少(精確到0。1min)?

變式訓(xùn)練:兩個(gè)粒子a、b從同一源發(fā)射出來(lái),在某一時(shí)刻,它們的位移分別為,(1)寫出此時(shí)粒子b相對(duì)粒子a的位移s;(2)計(jì)算s在方向上的投影。

三、反思總結(jié)

結(jié)合圖形特點(diǎn),選定正交基底,用坐標(biāo)表示向量進(jìn)行運(yùn)算解決幾何問(wèn)題,體現(xiàn)幾何問(wèn)題。

代數(shù)化的特點(diǎn),數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運(yùn)算簡(jiǎn)練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長(zhǎng)方形、正方形、直角三角形等平行、垂直等問(wèn)題常用此法。

本節(jié)主要研究了用向量知識(shí)解決平面幾何問(wèn)題和物理問(wèn)題;掌握向量法和坐標(biāo)法,以及用向量解決實(shí)際問(wèn)題的步驟。

高中優(yōu)秀教案數(shù)學(xué)篇3

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;

(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

(3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;

教學(xué)重點(diǎn)難點(diǎn)

重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

難點(diǎn)是解組合的應(yīng)用題.

教學(xué)過(guò)程設(shè)計(jì)

(-)導(dǎo)入新課

(教師活動(dòng))提出下列思考問(wèn)題,打出字幕.

[字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?

(學(xué)生活動(dòng))討論并回答.

答案提示:(1)排列;(2)組合.

[評(píng)述]問(wèn)題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.

設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的.上面設(shè)計(jì)的問(wèn)題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問(wèn)題.

(二)新課講授

[提出問(wèn)題 創(chuàng)設(shè)情境]

(教師活動(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說(shuō)明一個(gè)組合是什么?

3.一個(gè)組合與一個(gè)排列有何區(qū)別?

(學(xué)生活動(dòng))閱讀回答.

(教師活動(dòng))對(duì)照課文,逐一評(píng)析.

設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.

?歸納概括 建立新知】

(教師活動(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).

[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

[評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題.

(學(xué)生活動(dòng))傾聽、思索、記錄.

(教師活動(dòng))提出思考問(wèn)題.

[投影] 與 的關(guān)系如何?

(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .

根據(jù)分步計(jì)數(shù)原理,得到

[字幕]公式1:

公式2:

(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.

(三)小結(jié)

(師生活動(dòng))共同小結(jié).

本節(jié)主要內(nèi)容有

1.組合概念.

2.組合數(shù)計(jì)算的兩個(gè)公式.

(四)布置作業(yè)

1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

3.研究性題:

在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

(五)課后點(diǎn)評(píng)

在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

作業(yè)參考答案

2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

3.能組成 (注意不能用 點(diǎn)為頂點(diǎn))個(gè)四邊形, 個(gè)三角形.

探究活動(dòng)

同室四人各寫一張賀年卡,先集中起來(lái),然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬(wàn)式可有多少種?

解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來(lái)解.

解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.

甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.

甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.

由加法原理得,賀卡分配方法有3+3+3=9種.

解法二 可從利用排列數(shù)和組合數(shù)公式角度來(lái)考慮.這時(shí)還存在正向與逆向兩種思考途徑.

正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

高中優(yōu)秀教案數(shù)學(xué)篇4

一、上學(xué)期工作回顧及學(xué)生情況分析:

上學(xué)期期末參加考試人數(shù)31人,及格率%,平均分86分,最高分98分,最低分43,優(yōu)生率61%。

本班學(xué)生總體上說(shuō)比較愛學(xué),對(duì)一些基礎(chǔ)的知識(shí)大部分學(xué)生能扎實(shí)的掌握。但也有部分學(xué)生接受知識(shí)的能力相對(duì)較弱,學(xué)習(xí)基礎(chǔ)又不扎實(shí),從而導(dǎo)致學(xué)習(xí)成績(jī)不理想。本學(xué)期將針對(duì)班級(jí)實(shí)際情況,切實(shí)提高每位學(xué)生的學(xué)習(xí)能力和學(xué)習(xí)成績(jī)。

二、本冊(cè)教材的教學(xué)任務(wù)、要求及重點(diǎn):

教學(xué)任務(wù):

本冊(cè)教材內(nèi)容包括:比例,圓柱、圓錐和球,簡(jiǎn)單的統(tǒng)計(jì),整理和復(fù)習(xí)等四個(gè)部分。

教學(xué)要求:

1、掌握?qǐng)A柱、圓錐的特征,掌握幾何體體積的計(jì)算公式,學(xué)會(huì)正確計(jì)算它們的體積。

2、學(xué)會(huì)繪制復(fù)式統(tǒng)計(jì)表和統(tǒng)計(jì)圖,并能看懂、分析統(tǒng)計(jì)圖表中的數(shù)據(jù)所說(shuō)明的問(wèn)題。

3、理解比例的意義和性質(zhì),解比例,能正確判別成正比例或反比例的量,學(xué)會(huì)解答比較容易的比例應(yīng)用題。

4、通過(guò)小學(xué)數(shù)學(xué)知識(shí)的系統(tǒng)復(fù)習(xí)整理,鞏固和深化所學(xué)的數(shù)學(xué)知識(shí),提高計(jì)算和解題能力,培養(yǎng)獨(dú)立思考、不怕困難的精神。

教學(xué)重點(diǎn):

圓柱、圓錐,比例的應(yīng)用,小學(xué)階段主要數(shù)學(xué)知識(shí)的復(fù)習(xí)。

三、教學(xué)措施:

1、在教學(xué)中,為學(xué)生提供創(chuàng)造參與教學(xué)活動(dòng)的情境,努力構(gòu)建“和諧有效”課堂,通過(guò)操作、觀察、討論、比較等活動(dòng),先形象具體,后抽象概括,幫助學(xué)生理解和掌握知識(shí)點(diǎn)。

2、在教學(xué)中還要注意抓住新舊知識(shí)的內(nèi)在聯(lián)系,教給學(xué)生恰當(dāng)?shù)膶W(xué)習(xí)方法,使學(xué)生了解知識(shí)間的橫向聯(lián)系。

3、在教學(xué)中要重視學(xué)生的學(xué)法指導(dǎo),培養(yǎng)學(xué)生的遷移、類推能力。

4、抓好育尖補(bǔ)差工作,利用課余時(shí)間為他們補(bǔ)課。

高中優(yōu)秀教案數(shù)學(xué)篇5

教學(xué)目標(biāo)

1.明確等差數(shù)列的定義.

2.掌握等差數(shù)列的通項(xiàng)公式,會(huì)解決知道中的三個(gè),求另外一個(gè)的問(wèn)題

3.培養(yǎng)學(xué)生觀察、歸納能力.

教學(xué)重點(diǎn)

1. 等差數(shù)列的概念;

2. 等差數(shù)列的通項(xiàng)公式

教學(xué)難點(diǎn)

等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用

教具準(zhǔn)備

投影片1張

教學(xué)過(guò)程

(i)復(fù)習(xí)回顧

師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項(xiàng)公式和遞推公式。這兩個(gè)公式從不同的角度反映數(shù)列的特點(diǎn),下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數(shù)列有什么共同的特點(diǎn)?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:積極思考,找上述數(shù)列共同特點(diǎn)。

對(duì)于數(shù)列①(1≤n≤6);(2≤n≤6)

對(duì)于數(shù)列②-2n(n≥1)(n≥2)

對(duì)于數(shù)列③(n≥1)(n≥2)

共同特點(diǎn):從第2項(xiàng)起,第一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。

師:也就是說(shuō),這些數(shù)列均具有相鄰兩項(xiàng)之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們把它叫做等差數(shù)。

一、定義:

等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與空的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

如:上述3個(gè)數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

二、等差數(shù)列的通項(xiàng)公式

師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得:

若將這n-1個(gè)等式相加,則可得:

即:即:即:……

由此可得:師:看來(lái),若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng)。

如數(shù)列①(1≤n≤6)

數(shù)列②:(n≥1)

數(shù)列③:(n≥1)

由上述關(guān)系還可得:即:則:=如:三、例題講解

例1:(1)求等差數(shù)列8,5,2…的第20項(xiàng)

(2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?

解:(1)由n=20,得(2)由得數(shù)列通項(xiàng)公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。

(Ⅲ)課堂練習(xí)

生:(口答)課本p118練習(xí)3

(書面練習(xí))課本p117練習(xí)1

師:組織學(xué)生自評(píng)練習(xí)(同桌討論)

(Ⅳ)課時(shí)小結(jié)

師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

即(n≥2)

②等差數(shù)列通項(xiàng)公式 (n≥1)

推導(dǎo)出公式:

(v)課后作業(yè)

一、課本p118習(xí)題3.2 1,2

二、1.預(yù)習(xí)內(nèi)容:課本p116例2p117例4

2.預(yù)習(xí)提綱:

①如何應(yīng)用等差數(shù)列的定義及通項(xiàng)公式解決一些相關(guān)問(wèn)題?

②等差數(shù)列有哪些性質(zhì)?