導函數(shù)教案6篇

時間:2022-10-14 作者:Cold-blooded 備課教案

教案在撰寫的時候,你們需要強調(diào)文字表述規(guī)范,只有對自己的教學任務進行分析后,我們寫出的教案才是有價值的,范文社小編今天就為您帶來了導函數(shù)教案6篇,相信一定會對你有所幫助。

導函數(shù)教案6篇

導函數(shù)教案篇1

一、教材分析

1、 教材的地位和作用:

函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿在中學數(shù)學的始終,概念是數(shù)學的基礎,概念性強是函數(shù)理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應用。本課中對函數(shù)概念理解的程度會直接影響其它知識的學習,所以函數(shù)的第一課時非常的重要。

2、 教學目標及確立的依據(jù):

教學目標:

(1) 教學知識目標:了解對應和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。

(2) 能力訓練目標:通過教學培養(yǎng)的抽象概括能力、邏輯思維能力。

(3) 德育滲透目標:使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點。

教學目標確立的依據(jù):

函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿整個中學數(shù)學,如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強函數(shù)教學可幫助學好其他的內(nèi)容。而掌握好函數(shù)的概念是學好函數(shù)的基石。

3、教學重點難點及確立的依據(jù):

教學重點:映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。

教學難點:映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。

重點難點確立的依據(jù):

映射的概念和函數(shù)的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點難點必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運用上。

二、教材的處理:

將映射的定義及類比手法的運用作為本課突破難點的關鍵。 函數(shù)的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應觀點給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點,主要是從實際出發(fā)調(diào)動學生的學習熱情與參與意識,運用引導對比的手法,啟發(fā)引導學生進行有目的的反復比較幾個概念的異同,使真正對函數(shù)的概念有很準確的認識。

三、教學方法和學法

教學方法:講授為主,自主預習為輔。

依據(jù)是:因為以新的觀點認識函數(shù)概念及函數(shù)符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數(shù)的概念及符號的運用在學生的思想和知識結構中打上深刻的烙印,為能學好后面的知識打下堅實的基礎。

學法:四、教學程序

一、課程導入

通過舉以下一個通俗的例子引出通過某個對應法則可以將兩個非空集合聯(lián)系在一起。

例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應法則是否能將這兩個集合的某些元素聯(lián)系在一起?

二. 新課講授:

(1) 接著再通過幻燈片給出六組學生熟悉的數(shù)集的對應關系引導學生歸納它們的共同性質(zhì)(一對一,多對一),進而給出映射的概念,表示符號f:a→b,及原像和像的定義。強調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應法則 f。進一步引導判斷一個從a到b的對應是否為映射的關鍵是看a中的任意一個元素通過對應法則f在b中是否有唯一確定的元素與之對應。

(2)鞏固練習課本52頁第八題。

此練習能讓更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。

例1. 給出學生初中學過的函數(shù)的傳統(tǒng)定義和幾個簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應關系,引導發(fā)現(xiàn)它們是特殊的映射進而給出函數(shù)的近代定義(設a、b是兩個非空集合,如果按照某種對應法則f,使得a中的任何一個元素在集合b中都有唯一的元素與之對應則這樣的對應叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對應的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。

并把函數(shù)的近代定義與映射定義比較使認識到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。

再以讓判斷的方式給出以下關于函數(shù)近代定義的注意事項:2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。

3. f表示對應關系,在不同的函數(shù)中f的具體含義不一樣。

4. f(x)是一個符號,不表示f與x的乘積,而表示x經(jīng)過f作用后的結果。

5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。

66. “f:a→b”表示一個函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。

三.講解例題

例1.問y=1(x∈a)是不是函數(shù)?

解:y=1可以化為y=0*x+1

畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

[注]:引導從集合,映射的觀點認識函數(shù)的定義。

四.課時小結:

1. 映射的定義。

2. 函數(shù)的近代定義。

3. 函數(shù)的三要素及符號的正確理解和應用。

4. 函數(shù)近代定義的五大注意點。

五.課后作業(yè)及板書設計

書本p51 習題2.1的1、2寫在書上3、4、5上交。

預習函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。

函數(shù)(一)

一、映射:

2.函數(shù)近代定義: 例題練習

二、函數(shù)的定義 [注]1—5

1.函數(shù)傳統(tǒng)定義

三、作業(yè):

導函數(shù)教案篇2

學習目標:

(1)理解函數(shù)的概念

(2)會用集合與對應語言來刻畫函數(shù),

(3)了解構成函數(shù)的要素。

重點:

函數(shù)概念的理解

難點

函數(shù)符號y=f(x)的理解

知識梳理:

自學課本p29—p31,填充以下空格。

1、設集合a是一個非空的實數(shù)集,對于a內(nèi) ,按照確定的對應法則f,都有 與它對應,則這種對應關系叫做集合a上的一個函數(shù),記作 。

2、對函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集a)叫做這個函數(shù)的 ,所有函數(shù)值的集合 叫做這個函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫為 。

3、因為函數(shù)的值域被 完全確定,所以確定一個函數(shù)只需要

?

4、依函數(shù)定義,要檢驗兩個給定的變量之間是否存在函數(shù)關系,只要檢驗:

① ;② 。

5、設a, b是兩個實數(shù),且a

(1)滿足不等式 的實數(shù)x的集合叫做閉區(qū)間,記作 。

(2)滿足不等式a

(3)滿足不等式 或 的實數(shù)x的集合叫做半開半閉區(qū)間,分別表示為 ;

分別滿足x≥a,x>a,x≤a,x

其中實數(shù)a, b表示區(qū)間的兩端點。

完成課本p33,練習a 1、2;練習b 1、2、3。

例題解析

題型一:函數(shù)的概念

例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( )

練習:設m={x| },n={y| },給出下列四個圖像,其中能表示從集合m到集合n的函數(shù)關系的有____個。

題型二:相同函數(shù)的判斷問題

例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與

④ 與 其中表示同一函數(shù)的是( )

a. ② ③ b. ② ④ c. ① ④ d. ④

練習:已知下列四組函數(shù),表示同一函數(shù)的是( )

a. 和 b. 和

c. 和 d. 和

題型三:函數(shù)的定義域和值域問題

例3:求函數(shù)f(x)= 的定義域

練習:課本p33練習a組 4.

例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。

當堂檢測

1、下列各組函數(shù)中,表示同一個函數(shù)的是( a )

a、 b、

c、 d、

2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( c )

a、5 b、-5 c、6 d、-6

3、給出下列四個命題:

① 函數(shù)就是兩個數(shù)集之間的對應關系;

② 若函數(shù)的定義域只含有一個元素,則值域也只含有一個元素;

③ 因為 的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);

④ 定義域和對應關系確定后,函數(shù)的值域也就確定了.

其中正確的有( b )

a. 1 個 b. 2 個 c. 3個 d. 4 個

4、下列函數(shù)完全相同的是 ( d )

a. , b. ,

c. , d. ,

5、在下列四個圖形中,不能表示函數(shù)的圖象的是 ( b )

6、設 ,則 等于 ( d )

a. b. c. 1 d.0

7、已知函數(shù) ,求 的值.( )

導函數(shù)教案篇3

目標:

1.讓學生熟練掌握二次函數(shù)的圖象,并會判斷一元二次方程根的存在性及根的個數(shù) ;

2.讓學生了解函數(shù)的零點與方程根的聯(lián)系 ;

3.讓學生認識到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點中的作用 ;

4。培養(yǎng)學生動手操作的能力 。

二、教學重點、難點

重點:零點的概念及存在性的判定;

難點:零點的確定。

三、復習引入

例1:判斷方程 x2-x-6=0 解的存在。

分析:考察函數(shù)f(x)= x2-x-6, 其

圖像為拋物線容易看出,f(0)=-60,

f(4)0,f(-4)0

由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,

點b (0,-6)與點c(4,6)之間的那部分曲線

必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點

x1 使f(x1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至

少有點x2,使得f( x2)=0,而方程至多有兩

個解,所以在(-4,0),(0,4)內(nèi)各有一解

定義:對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù) x叫函數(shù)y=f(x)的零點

抽象概括

y=f(x)的圖像與x軸的交點的橫坐標叫做該函數(shù)的零點,即f(x)=0的解。

若y=f(x)的`圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個零點,即f(x)=0在 (a,b)內(nèi)至少有一個實數(shù)解。

f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點

所以求方程f(x)=0的根實際上也是求函數(shù)y=f(x)的零點

注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個實數(shù)解指出了方程f(x)=0的實數(shù)解的存在性,并不能判斷具體有多少個解;

2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實數(shù)解;

3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

4、但此結論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。

四、知識應用

例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實數(shù)解?為什么?

解:f(x)=3x-x2的圖像是連續(xù)曲線, 因為

f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點,即f(x)=0在區(qū)間[-1,0]內(nèi)有實數(shù)解

練習:求函數(shù)f(x)=lnx+2x-6 有沒有零點?

例3 判定(x-2)(x-5)=1有兩個相異的實數(shù)解,且有一個大于5,一個小于2。

解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

f(5)=(5-2)(5-5)-1=-1

f(2)=(2-2)(2-5)-1=-1

又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個交點,在( -,2)內(nèi)也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數(shù)解,且一個大于5,一個小于2。

練習:關于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內(nèi),求m的取值范圍。

五、課后作業(yè)

p133第2,3題

導函數(shù)教案篇4

教材分析

在函數(shù)教學中,我們不僅要在教會函數(shù)知識上下功夫,而且還應該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學思想方法的高度進行函數(shù)教學。 在函數(shù)的教學中,應突出“類比”的思想和“數(shù)形結合”的思想。

1 .注重“類比教學” 在函數(shù)教學中我們期望的是通過對前面知識的學習方法的傳授,達到對后續(xù)知識的學習產(chǎn)生影響,使學生達到舉一反三,觸類旁通的目的,讓學生順利地由 “ 學會 ” 到 “ 會學 ” ,真正實現(xiàn) “ 教是為了不教 ” 的目的.

2. 注重“數(shù)學結合”的教學

數(shù)形結合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關系和空間形式的科學。而數(shù)形結合就是通過數(shù)與形之間的對應和轉(zhuǎn)化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。

( 1 )讓學生經(jīng)歷繪制函數(shù)圖象的具體過程。

( 2 )切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。

( 3 )注意讓學生體會研究具體函數(shù)圖象規(guī)律的方法。

知識技能

目標

1、理解直線y=kx+b與y=kx之間的位置關系;

2、會選擇兩個合適的點畫出一次函數(shù)的圖象;

3、掌握一次函數(shù)的性質(zhì).

過程與方法目標

1、通過研究圖象,經(jīng)歷知識的歸納、探究過程;培養(yǎng)學生觀察、比較、概括、推理的能力;

2、通過一次函數(shù)的圖象總結函數(shù)的性質(zhì),體驗數(shù)形結合法的應用,培養(yǎng)推理及抽象思維能力。

情感態(tài)度目標

1、通過畫函數(shù)圖象并借助圖象研究函數(shù)的性質(zhì),體驗數(shù)與形的內(nèi)在聯(lián)系,感受函數(shù)圖象的簡潔美;

2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

教學重點

一次函數(shù)的圖象和性質(zhì)。

教學難點

由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。

導函數(shù)教案篇5

一、教材分析

(一)內(nèi)容說明

函數(shù)是中學數(shù)學的重要內(nèi)容,中學數(shù)學對函數(shù)的研究大致分成了三個階段。

三角函數(shù)是最具代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學習的延伸,也是第四章《三角函數(shù)》的核心內(nèi)容,是在前面已經(jīng)學習過正、余弦函數(shù)的圖象、三角函數(shù)的有關概念和公式基礎上進行的,其知識和方法將為后續(xù)內(nèi)容的學習打下基礎,有承上啟下的作用。

本節(jié)課是數(shù)形結合思想方法的良好素材。數(shù)形結合是數(shù)學研究中的重要思想方法和解題方法。

著名數(shù)學家華羅庚先生的詩句:......數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休......可以說精辟地道出了數(shù)形結合的重要性。

本節(jié)通過對數(shù)形結合的進一步認識,可以改進學習方法,增強學習數(shù)學的自信心和興趣。另外,三角函數(shù)的曲線性質(zhì)也體現(xiàn)了數(shù)學的對稱之美、和諧之美。

因此,本節(jié)課在教材中的知識作用和思想地位是相當重要的。

(二)課時安排

4.8節(jié)教材安排為4課時,我計劃用5課時

(三)目標和重、難點

1.教學目標

教學目標的確定,考慮了以下幾點:

(1)高一學生有一定的抽象思維能力,而形象思維在學習中占有不可替代的地位,所以本節(jié)要緊緊抓住數(shù)形結合方法進行探索;

(2)本班學生對數(shù)學科特別是函數(shù)內(nèi)容的學習有畏難情緒,所以在內(nèi)容上要降低深難度。

(3)學會方法比獲得知識更重要,本節(jié)課著眼于新知識的探索過程與方法,鞏固應用主要放在后面的三節(jié)課進行。

由此,我確定了以下三個層面的教學目標:

(1)知識層面:結合正弦曲線、余弦曲線,師生共同探索發(fā)現(xiàn)正(余)弦函數(shù)的性質(zhì),讓學生學會正確表述正、余函數(shù)的單調(diào)性和對稱性,理解體會周期函數(shù)性質(zhì)的研究過程和數(shù)形結合的研究方法;

(2)能力層面:通過在教師引導下探索新知的過程,培養(yǎng)學生觀察、分析、歸納的自學能力,為學生學習的可持續(xù)發(fā)展打下基礎;

(3)情感層面:通過運用數(shù)形結合思想方法,讓學生體會(數(shù)學)問題從抽象到形象的轉(zhuǎn)化過程,體會數(shù)學之美,從而激發(fā)學習數(shù)學的信心和興趣。

2.重、難點

由以上教學目標可知,本節(jié)重點是師生共同探索,正、余函數(shù)的性質(zhì),在探索中體會數(shù)形結合思想方法。

難點是:函數(shù)周期定義、正弦函數(shù)的單調(diào)區(qū)間和對稱性的理解。

為什么這樣確定呢?

因為周期概念是學生第一次接觸,理解上易錯;單調(diào)區(qū)間從圖上容易看出,但用一個區(qū)間形式表示出來,學生感到困難。

如何克服難點呢?

其一,抓住周期函數(shù)定義中的關鍵字眼,舉反例說明;

其二,利用函數(shù)的周期性規(guī)律,抓住“橫向距離”和“k∈z"的含義,充分結合圖象來理解單調(diào)性和對稱性

二、教法分析

(一)教法說明教法的確定基于如下考慮:

(1)心理學的研究表明:只有內(nèi)化的東西才能充分外顯,只有學生自己獲取的知識,他才能靈活應用,所以要注重學生的自主探索。

(2)本節(jié)目的是讓學生學會如何探索、理解正、余弦函數(shù)的性質(zhì)。教師始終要注意的是引導學生探索,而不是自己探索、學生觀看,所以教師要引導,而且只能引導不能代辦,否則不但沒有教給學習方法,而且會讓學生產(chǎn)生依賴和倦怠。

(3)本節(jié)內(nèi)容屬于本源性知識,一般采用觀察、實驗、歸納、總結為主的方法,以培養(yǎng)學生自學能力。

所以,根據(jù)以人為本,以學定教的原則,我采取以問題為解決為中心、啟發(fā)為主的教學方法,形成教師點撥引導、學生積極參與、師生共同探討的課堂結構形式,營造一種民主和諧的課堂氛圍。

(二)教學手段說明:

為完成本節(jié)課的教學目標,突出重點、克服難點,我采取了以下三個教學手段:

(1)精心設計課堂提問,整個課堂以問題為線索,帶著問題探索新知,因為沒有問題就沒有發(fā)現(xiàn)。

(2)為便于課堂操作和知識條理化,事先制作正弦函數(shù)、余弦函數(shù)性質(zhì)表,讓學生當堂完成表格的填寫;

(3)為節(jié)省課堂時間,制作幻燈片演示正、余弦函數(shù)圖象和性質(zhì),也可以使教學更生動形象和連貫。

三、學法和能力培養(yǎng)

我發(fā)現(xiàn),許多學生的學習方法是:直接記住函數(shù)性質(zhì),在解題中套用結論,對結論的來源不理解,知其然不知其所以然,應用中不能變通和遷移。

本節(jié)的學習方法對后續(xù)內(nèi)容的學習具有指導意義。為了培養(yǎng)學法,充分關注學生的可持續(xù)發(fā)展,教師要轉(zhuǎn)換角色,站在初學者的位置上,和學生共同探索新知,共同體驗數(shù)形結合的研究方法,體驗周期函數(shù)的研究思路;幫助學生實現(xiàn)知識的意義建構,幫助學生發(fā)現(xiàn)和總結學習方法,使教師成為學生學習的高級合作伙伴。

教師要做到:

授之以漁,與之合作而漁,使學生享受漁之樂趣。因此

1.本節(jié)要教給學生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學習方法。

2.通過本課的探索過程,培養(yǎng)學生觀察、分析、交流、合作、類比、歸納的學習能力及數(shù)形結合(看圖說話)的意識和能力。

四、教學程序

指導思想是:兩條線索、三大特點、四個環(huán)節(jié)

(一)導入

引出數(shù)形結合思想方法,強調(diào)其含義和重要性,告訴學生,本節(jié)課將利用數(shù)形結合方法來研究,會使學習變得輕松有趣。

采用這樣的引入方法,目的是打消學生對函數(shù)學習的畏難情緒,引起學生注意,也激起學生好奇和興趣。

(二)新知探索主要環(huán)節(jié),分為兩個部分

教學過程如下:

第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)

1.定義域、值域2.周期性

3.單調(diào)性(重難點內(nèi)容)

為了突出重點、克服難點,采用以下手段和方法:

(1)利用多媒體動態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結合的重要作用;

(2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學生的積極性將被調(diào)動起來。

(3)單調(diào)區(qū)間的探索過程是:

先在靠近原點的一個單調(diào)周期內(nèi)找出正弦函數(shù)的一個增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認識過程。

**教師結合圖象幫助學生理解并強調(diào)“距離”(“長度”)是周期的多少倍

為什么要這樣強調(diào)呢?

因為這是對知識的一種意義建構,有助于以后理解記憶正弦型函數(shù)的相關性質(zhì)。

4.對稱性

設計意圖:

(1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。

(2)從正弦函數(shù)的對稱性看到了數(shù)學的對稱之美、和諧之美,體現(xiàn)了數(shù)學的審美功能。

5.最值點和零值點

有了對稱性的理解,容易得出此性質(zhì)。

第二部分————學習任務轉(zhuǎn)移給學生

設計意圖:

(1)通過把學習任務轉(zhuǎn)移給學生,激發(fā)學生的主體意識和成就動機,利于學生作自我評價;

(2)通過學生自主探索,給予學生解決問題的自主權,促進生生交流,利于教師作反饋評價;

(3)通過課堂教學結構的改革,提高課堂教學效率,最終使學生成為獨立的學習者,這也符合建構主義的教學原則。

(三)鞏固練習

補充和選作題體現(xiàn)了課堂要求的差異性。

(四)結課

五、板書說明既要體現(xiàn)原則性又要考慮靈活性

1.板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;同時不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導性、啟發(fā)性、創(chuàng)造性的原則;(原則性)

2.使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。(靈活性)

六、效果及評價說明

(一)知識診斷

(二)評價說明

1.針對本班學生情況對課本進行了適當改編、細化,有利于難點克服和學生主體性的調(diào)動。

2.根據(jù)課堂上師生的雙邊活動,作出適時調(diào)整、補充(反饋評價);根據(jù)學生課后作業(yè)、提問等情況,反復修改并指導下節(jié)課的設計(反復評價)。

3.本節(jié)課充分體現(xiàn)了面向全體學生、以問題解決為中心、注重知識的建構過程與方法、重視學生思想與情感的'設計理念,積極地探索和實踐我校的科研課題——努力推進課堂教學結構改革。

通過這樣的探索過程,相信學生能從中有所體會,對后續(xù)內(nèi)容的學習和學生的可持續(xù)發(fā)展會有一定的幫助。希望很久以后留在學生記憶中的不是知識本身,而是方法與思想,是學習的習慣和熱情,這正是我們教育工作者追求的結果。

導函數(shù)教案篇6

教學目標:

1、經(jīng)歷描點法畫函數(shù)圖像的過程;

2、學會觀察、歸納、概括函數(shù)圖像的特征;

3、掌握 型二次函數(shù)圖像的特征;

4、經(jīng)歷從特殊到一般的認識過程,學會合情推理。

教學重點:

型二次函數(shù)圖像的描繪和圖像特征的歸納

教學難點:

選擇適當?shù)淖宰兞康闹岛拖鄳暮瘮?shù)值來畫函數(shù)圖像,該過程較為復雜。

教學設計:

一、回顧知識

前面我們在學習正比例函數(shù)、一次函數(shù)和反比例函數(shù)時時如何進一步研究這些函數(shù)的? 先(用描點法畫出函數(shù)的圖像,再結合圖像研究性質(zhì)。)

引入:我們仿照前面研究函數(shù)的方法來研究二次函數(shù),先從最特殊的形式即 入手。因此本節(jié)課要討論二次函數(shù) ( )的圖像。

板書課題:二次函數(shù) ( )圖像

二、探索圖像

1、 用描點法畫出二次函數(shù) 和 圖像

(1) 列表

引導學生觀察上表,思考一下問題:

①無論x取何值,對于 來說,y的值有什么特征?對于 來說,又有什么特征?

②當x取 等互為相反數(shù)時,對應的y的值有什么特征?

(2) 描點(邊描點,邊總結點的位置特征,與上表中觀察的結果聯(lián)系起來).

(3) 連線,用平滑曲線按照x由小到大的順序連接起來,從而分別得到 和 的圖像。

2、 練習:在同一直角坐標系中畫出二次函數(shù) 和 的圖像。

學生畫圖像,教師巡視并輔導學困生。(利用實物投影儀進行講評)

3、二次函數(shù) ( )的圖像

由上面的四個函數(shù)圖像概括出:

(1) 二次函數(shù)的 圖像形如物體拋射時所經(jīng)過的路線,我們把它叫做拋物線,

(2) 這條拋物線關于y軸對稱,y軸就是拋物線的對稱軸。

(3) 對稱軸與拋物線的交點叫做拋物線的頂點。注意:頂點不是與y軸的交點。

(4) 當 時,拋物線的開口向上,頂點是拋物線上的最低點,圖像在x軸的上方(除頂點外);當 時,拋物線的開口向下,頂點是拋物線上的最高點圖像在x軸的 下方(除頂點外)。

(最好是用幾何畫板演示,讓學生加深理解與記憶)

三、課堂練習

觀察二次函數(shù) 和 的圖像

(1) 填空:

拋物線

頂點坐標

對稱軸

位 置

開口方向

(2)在同一坐標系內(nèi),拋物線 和拋物線 的位置有什么關系?如果在同一個坐標系內(nèi)畫二次函數(shù) 和 的圖像怎樣畫更簡便?

(拋物線 與拋物線 關于x軸對稱,只要畫出 與 中的一條拋物線,另一條可利用關于x軸對稱來畫)

四、例題講解

例題:已知二次函數(shù) ( )的圖像經(jīng)過點(-2,-3)。

(1) 求a 的值,并寫出這個二次函數(shù)的解析式。

(2) 說出這個二次函數(shù)圖像的頂點坐標、對稱軸、開口方向和圖像的位置。

練習:(1)課本第31頁課內(nèi)練習第2題。

(2) 已知拋物線y=ax2經(jīng)過點a(-2,-8)。

(1)求此拋物線的函數(shù)解析式;

(2)判斷點b(-1,- 4)是否在此拋物線上。