教師在教學(xué)中一定要將教學(xué)反思寫好,經(jīng)常寫教學(xué)反思對提高我們的教學(xué)質(zhì)量是有很大幫助的,下面是范文社小編為您分享的分式和方程教學(xué)反思8篇,感謝您的參閱。
分式和方程教學(xué)反思篇1
昨天設(shè)計這一節(jié)課時,我先講解一個例題,并且說出解分式方程的思想編成一段文字,讓孩子們記住,并且講解難點――找最簡公分母惡幾種情況。然后讓同學(xué)們練習(xí)。但就在昨晚入眠前的那一刻,我改變了主意。
這節(jié)課,我讓孩子們先做三道典型的題目,由于我沒有預(yù)先教孩子們怎么做,肯定困難重重,這又何妨呢?我讓孩子們自己克服困難去琢磨書本的例題后再來解答例題,很多同學(xué)通過觀察例題很規(guī)范的搞定書后的練習(xí)。同時黃杰,懿嘉,芊悅?cè)瑢W(xué)自覺上臺來解答并板書后,讓他們給全班講解這三題的思路。最后當(dāng)堂檢測學(xué)習(xí)效果。
1.不要怕學(xué)生有困難,不要總是給學(xué)生理好思路,讓孩子模仿;這一節(jié)課中,如果按照我先前的設(shè)計,可能很多同學(xué)都很快掌握,但孩子的學(xué)習(xí)能力沒有實質(zhì)性提高,沒有深度體驗到學(xué)習(xí)的快樂,成了訓(xùn)練的機器。所以這一節(jié)課中,讓孩子自學(xué),陳芊悅上臺前根本就不會做這一題,但她大膽的走上臺,在臺上臨時學(xué)習(xí),自行琢磨書上例題后解答出來最難的一道練習(xí),相信她很有成就感。事實上,很多同學(xué)都能通過自學(xué)搞定。同時也暴露自己學(xué)習(xí)中的問題,讓大家來幫忙。
2.讓孩子們學(xué)會傾聽;當(dāng)同學(xué)在臺上講解時,下面的同學(xué)要仔細(xì)聽,找到他講解的漏洞,或者語言表達(dá)中的問題。然后提出自己的意見。這一點很多同學(xué)做到了,但還要強化少部分同學(xué)的這種能力。
3.什么內(nèi)容適合學(xué)生講解?并不是每一部分內(nèi)容都適合講解,同學(xué)講解前,一定是所有的同學(xué)對問題有了深入的研究,有了自己的想法思路,然后和講解者產(chǎn)生共鳴,這樣的講解才有效果。包括老師給同學(xué)講解前也要遵循同樣的道理,所以要先學(xué)后教。如果還有少數(shù)同學(xué)不懂,一定得借力周圍的同學(xué)去把問題搞懂后再聽臺上同學(xué)講解。
4.給孩子鼓勵,相信孩子們能行。借助課堂培養(yǎng)自主學(xué)習(xí)能力,既要充分相信孩子,但也要預(yù)先充分估計孩子們在學(xué)習(xí)中的困難,才能給出恰到好處的指點,比如,這節(jié)課中貝貝在計算中出現(xiàn)錯誤,我并沒有直接指出問題,我告訴她自己去按照常規(guī)把方程的解帶入方程檢驗的方法,自己去發(fā)現(xiàn)問題所在。
分式和方程教學(xué)反思篇2
分式是八年級數(shù)學(xué)的第一章,經(jīng)歷了三周多的學(xué)習(xí),學(xué)生已基本掌握了分式的有關(guān)知識(分式的概念、分式的基本性質(zhì)、約分、通分、分式的運算、分式方程和能化為一元一次方程的分式方程的應(yīng)用題等),并且獲得了學(xué)習(xí)代數(shù)知識的常用方法,感受到代數(shù)學(xué)習(xí)的實際應(yīng)用價值。下面是我在教學(xué)中的幾點體會:
一、教學(xué)中的發(fā)現(xiàn)
本章可以讓學(xué)生通過觀察、類比、猜想、嘗試等活動學(xué)習(xí)分式的運算法則,發(fā)展他們的合情推理能力,所以教學(xué)時重點應(yīng)放在對法則的探索過程上。一定要讓學(xué)生充分活動起來。在觀察、類比、猜想、嘗試當(dāng)一系列思想活動中發(fā)現(xiàn)法則、理解法則、應(yīng)用法則,同時還要關(guān)注學(xué)生對算理的理解,以培養(yǎng)學(xué)生的代數(shù)表達(dá)能力、運算能力和有理的思考問題能力??墒俏以谥R的傳授上并沒有注重探索、類比法則,而重在對分式四則運算法則的運用和分式方程的運用上,沒有抓住教學(xué)的關(guān)鍵環(huán)節(jié)恰當(dāng)?shù)倪x擇教學(xué)方法。今后要避免類似事情的發(fā)生。
二、教學(xué)中的重建
分式的運算(加、減、乘、除、乘方和混合運算)是代數(shù)恒等變形的基礎(chǔ)之一,但是不能盲目的加大運算量與題目的難度,重點應(yīng)放在對運算過程推理的理解上,把分式的基本性質(zhì)做到靈活運用。
再則,對課本上關(guān)于分式的具體問題一定要重視,并關(guān)注學(xué)生在這些具體活動中的投入程度,看他們能否積極主動地參與,其次看學(xué)生在這些活動中的思維發(fā)展水平—-—能否獨立思考?能否用數(shù)學(xué)語言表達(dá)自己的想法?能否反思自己的思維過程?進而發(fā)現(xiàn)新的問題,培養(yǎng)學(xué)生解決問題的能力!提高學(xué)生的學(xué)習(xí)興趣!
分式和方程教學(xué)反思篇3
本節(jié)課分式方程的解法部分屬于重點,難點為利用分式方程解實際問題。分式方程的解法是解決大多數(shù)數(shù)學(xué)問題的基礎(chǔ)公具,應(yīng)讓學(xué)生們從思想上認(rèn)識到它的重要性,解實際問題需正確找到等量關(guān)系,構(gòu)建數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)計算問題,本節(jié)課學(xué)生對這條教學(xué)主線,理解較為清晰。
本節(jié)課我采用了啟發(fā)講授、合作探究、講練相結(jié)合的教學(xué)方式。在課堂教學(xué)過程中努力貫徹“教師為主導(dǎo)、學(xué)生為主體、探究為主線、思維為核心”新課表理念。使學(xué)生充分地動口、動腦,參與教學(xué)全過程。在教學(xué)過程中,為了達(dá)到學(xué)習(xí)目標(biāo),強化重點內(nèi)容并突破學(xué)習(xí)中的難點,在課堂教學(xué)過程中,根據(jù)教學(xué)目標(biāo)和學(xué)生的具體情況,緊密聯(lián)系實例,精心設(shè)計問題情境,使所有學(xué)生既能參與,又有探索的余地,全體學(xué)生在獲得必要發(fā)展的前提下,不同的學(xué)生獲得不同的體驗。達(dá)到了課堂教學(xué)的有效性。在學(xué)法指導(dǎo)上,本著“授之以魚,不如授之以漁”的原則,圍繞本節(jié)課所學(xué)知識,激發(fā)學(xué)生積極思考,教會學(xué)生分析問題的方法,使學(xué)生既能在探索中獲取知識,又能不斷豐富數(shù)學(xué)活動的經(jīng)驗,學(xué)會探索,提高分析問題、解決問題的能力。
本節(jié)課體現(xiàn)了本人,努力培養(yǎng)具有較高數(shù)學(xué)素養(yǎng)的一代新人的教育觀點,達(dá)到了預(yù)期的教學(xué)效果。
分式和方程教學(xué)反思篇4
在本節(jié)課的教學(xué)過程中首先明確目標(biāo)是讓學(xué)生如何找到等量關(guān)系,書本原先給出兩個例子較難達(dá)到這個教學(xué)效果,原因是學(xué)生對毛利率的概念本身不清楚,按照書本的引入,一開始課堂就可能處以一種安靜的思維很難打開的狀態(tài),不能有效地激發(fā)學(xué)生學(xué)習(xí)興趣與激情,所以才用學(xué)生經(jīng)過自己努力思考之后完全能解答的題目作為第一題,讓學(xué)生體會到成功的喜悅,這樣學(xué)生才會愿意繼續(xù)探索與學(xué)習(xí);其次應(yīng)用題的難度設(shè)置上是層層深入,提問是分層次性,能夠讓不同層面的學(xué)生都有不同的體會與感受。
將“毛利率”概念的問題采用調(diào)查的方法,能夠有效發(fā)揮學(xué)生右腦在形象思維上優(yōu)勢,從而為后面的解答抽象的邏輯、左腦理性思考做了準(zhǔn)備;能夠最大限度發(fā)揮學(xué)生原有的能力。
公式變形,書本例題是才用將右邊先進行變形,再倒過來分析,我認(rèn)為學(xué)生的解答方法更具有對稱美,在課堂中予以充分的肯定,這一方面培養(yǎng)學(xué)生的審美能力、更重要的是肯定學(xué)生進行思考的價值、從而激發(fā)學(xué)生思考的意愿與熱情!
其實任何一節(jié)課的教學(xué)設(shè)計以及對課堂的動態(tài)把握只能針對具體實際情況進行調(diào)整分析,如果學(xué)生對“毛利率”等概念已經(jīng)非常熟悉、閱讀理解能力很強那么這節(jié)課的教學(xué)設(shè)計肯定是另一番樣子。
分式和方程教學(xué)反思篇5
本節(jié)課作為分式方程的第一節(jié)課,是在學(xué)生掌握了一元一次方程的解法及分式四則混合運算的基礎(chǔ)上展開的,既是前一節(jié)的深化,同時解決了解方程的問題,又為以后的教學(xué)——“應(yīng)用”打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。
本節(jié)的教學(xué)重點是探索分式方程概念、會解可化為一元一次方程的分式方程、明確分式方程與整式方程的區(qū)別和聯(lián)系。教學(xué)難點是如何將分式方程轉(zhuǎn)化成整式方程。本節(jié)教材中的引例分式方程較復(fù)雜,學(xué)生直接探索它的解法有些困難。我是從簡單的整式方程引出分式方程后,再引導(dǎo)學(xué)生探究它的解法。這樣很輕松地找到新知識的切入點:用等式性質(zhì)去分母,轉(zhuǎn)化為整式方程再求解。因此,學(xué)生學(xué)的效果也較好。
我認(rèn)為比較成功的
1、把思考留給學(xué)生,課堂教學(xué)試一試這個環(huán)節(jié)中,我把更多的思維空間留給學(xué)生。問題不輕易直接告訴學(xué)生答案,而由學(xué)生通過動手動腦來獲得,從而發(fā)揮他們的主觀能動性。我主要在做題方法上指導(dǎo),思維方式上點撥。改變那種讓學(xué)生在自己后面亦步亦趨的習(xí)慣,從而成為愛動腦、善動腦的學(xué)習(xí)者。
2、積極正確的引導(dǎo),點撥。保證學(xué)生掌握正確知識,和清晰的解題思路。由于學(xué)生總結(jié)的語言有限,我就把本節(jié)課的重點內(nèi)容:解分式方程的思路,步驟,如何檢驗等都用多媒體形式給學(xué)生展示出來。還有在解分式方程過程中容易出現(xiàn)的問題都給學(xué)生做了強調(diào)。
3、及時檢查糾正,保證學(xué)生認(rèn)識到自己的錯誤并在第一時間內(nèi)更正。學(xué)生在做題過程中我就在教室巡視,及時發(fā)現(xiàn)學(xué)生的錯誤,及時糾正。對于困難的學(xué)生也做個別輔導(dǎo)。
雖然在課堂上做了很多,但也存在許多不足的地方,這也是我在今后教學(xué)中應(yīng)該注意的地方。第一,講例題時,先講一個產(chǎn)生增根的較好,這樣便于說明分式方程有時無解的原因,也便于講清分式方程檢驗的必要性,也是解分式方程與整式方程最大的區(qū)別所在,從而再強調(diào)解分式方程必須檢驗,不能省略不寫這一步。第二,給學(xué)生的鼓勵不是很多。鼓勵可以讓學(xué)生有充分的自信心?!靶判氖浅晒Φ囊话搿?,“在今后的課堂教學(xué)中,應(yīng)尊重其差異性,盡可能分層教學(xué),評價標(biāo)準(zhǔn)多樣化。多鼓勵,少批評;多肯定,少指責(zé)。用動態(tài)的、發(fā)展的、積極的眼光看待每個學(xué)生,幫助他們樹立自信心。贊美的力量是巨大的,有時,一句贊美的話,可以改變?nèi)说囊簧?。一句肯定的話、一個贊許的點頭、一張表示優(yōu)勝的卡片,都是很好的鼓勵,會起到意想不到的良好結(jié)果。
分式和方程教學(xué)反思篇6
進入初三總復(fù)習(xí)以來,我一直都在嘗試探索一種比較適合總復(fù)習(xí)課的課堂教學(xué)模式,經(jīng)過近兩周的教學(xué)實踐,我基本形成了以下的課堂教學(xué)流程:作業(yè)評析→出示學(xué)習(xí)目標(biāo)→考點分析→學(xué)生獨立完成學(xué)案→小結(jié)歸納→課堂檢測,今天在進行“可轉(zhuǎn)化為整式方程的分式方程”的復(fù)習(xí)課時,我也是按這樣的流程來進行,沒想到發(fā)生了一些意外,以致于影響了整堂課的教學(xué)效果。
在作業(yè)評析環(huán)節(jié),我照常收集學(xué)生上堂課測驗及課后作業(yè)中存在的問題,由學(xué)生講解其解答方法與思路,然后再給時間讓學(xué)生自行改正。為了突出本節(jié)課與分式的化簡求值的區(qū)別,我還收集了學(xué)生以往在分式的運算中容易出錯的一個問題。沒想到仍有相當(dāng)多的學(xué)生在解答這個問題時卻依然遇到了當(dāng)初那樣的困難,出現(xiàn)了同樣的錯誤,于是我不得不已再花時間讓學(xué)生自我反思與自我改正解答的方法。這樣,課堂已過去了10來分鐘的時間了,對后面的教學(xué)產(chǎn)生了直接的影響。
在學(xué)生獨立完成學(xué)案的過程中,雖然我在此之前曾引導(dǎo)學(xué)生回顧解分式方程的一般步驟,也書寫在黑板上,但我沒想到的是依然有相當(dāng)多的學(xué)生對解分式方程的步驟是陌生的,特別是解答過程的書寫更是顯得百花齊放,有個別學(xué)生甚至于無從下手。于是我不得不已用一個例題示范解答過程,這樣又花去了不少的時間,導(dǎo)致學(xué)生在課堂教學(xué)內(nèi)容難以順利完成。
那么,是什么原因?qū)е鲁霈F(xiàn)了這些意外呢?作業(yè)的評析環(huán)節(jié)為什么要花這么多的時間呢?學(xué)生為什么地分式方程的解答思路過程是如此的陌生呢?
答案并不難以找到。
一方面,在作業(yè)評析的環(huán)節(jié)里,我收集到的問題都是學(xué)生容易出錯的問題或感到比較困難的問題,雖然這些問題他們都曾遇到過,但難度自然不會小,因此當(dāng)需要他們再次解答時自然也就容易出現(xiàn)錯誤,因此所花的時間當(dāng)然就較多了。
另一方面,學(xué)生對分式方程的解答思路方法的陌生,并不是因為分式方程的解答思路方法有多難或有多復(fù)雜,而是因為這部分內(nèi)容離當(dāng)初學(xué)生學(xué)習(xí)的時間太遠(yuǎn)了,而且當(dāng)初在學(xué)習(xí)這部分內(nèi)容時所用的課時就非常少,因此在學(xué)生的大腦中留下的印象并不深刻。
問題原因似乎找到了,那么有沒有什么好的辦法去解決呢?
先來看作業(yè)評析環(huán)節(jié)中出現(xiàn)的問題。仔細(xì)分析課前準(zhǔn)備及教學(xué)過程中的每一個環(huán)節(jié),再回憶當(dāng)初這些問題的解答方法,我發(fā)現(xiàn)了問題的根源,當(dāng)時在解答這些較難或較易出錯的問題時,為了趕課堂的教學(xué)時間,完成教學(xué)任務(wù),我沒有給時間讓學(xué)生進行充分的交流,而是包辦式的進行講解分析,那時雖然講解得清晰易懂,學(xué)生當(dāng)時也反饋能聽明白了,但當(dāng)要他們真正動手時,卻依然犯同樣的錯誤。因此,缺少交流的問題講解,雖然聽懂,但不會做。同時,我選擇的問題較多(3個)也是花費時間較多的原因,但如果不把這些易出錯的問題都解決,那么學(xué)生所積累下的問題豈不是越來越多了?
再來看我所編寫的學(xué)案吧。我本以為學(xué)生對分式方程的解答思路步驟是非常熟悉的,所以沒有在學(xué)案中安排例題示范去讓學(xué)生自主閱讀、復(fù)習(xí)。那么,在學(xué)案中安排例題示范會不會比讓學(xué)生在課堂練習(xí)過程中出現(xiàn)問題時再解釋好些呢?我想,前者也許會省下課堂教學(xué)時間,但后者也許能給學(xué)生更深的印象,后者也許教學(xué)效果會更好。
另一方面,課前我已預(yù)測到學(xué)生可能會把分式方程的解法與分式的化簡相混淆起來,很有可能什么出現(xiàn)在進行分式的化簡時也去分母的錯誤??晌覅s在學(xué)案中忽視了編一兩個分式的化簡的問題,因此學(xué)生在課堂上也就無法對這兩者進行了比較。
因此,在編寫學(xué)案時,特別是集體備課時,必需對每一個問題進行推敲,以使學(xué)案更能發(fā)揮輔助學(xué)生復(fù)習(xí)的作用。
那么,節(jié)課剩下的問題只能在下一節(jié)課再進行解決了!
分式和方程教學(xué)反思篇7
本節(jié)的教學(xué)重點是探索分式方程概念、會解可化為一元一次方程的分式方程、明確分式方程與整式方程的區(qū)別和聯(lián)系。教學(xué)難點是如何將分式方程轉(zhuǎn)化成整式方程。
下面結(jié)合教學(xué)過程談?wù)勛约旱膸c感悟:
一、知識鏈接部分我設(shè)計了分式有無意義和找?guī)捉M分式的最簡公分母,幫助學(xué)生回憶舊知識,并且為本節(jié)課解分式方程掃清障礙。
反思:在這個環(huán)節(jié)里,出現(xiàn)了一個問題,就是對學(xué)生估計過高,尤其是最簡公分母的找法中下游的學(xué)生把舊知識忘了,造成浪費了課上的時間。
二、由課本中的百米賽跑的應(yīng)用題引出分式方程的概念。我把課本中的閱讀和一起探究改為幾個小問題讓學(xué)生自主探究然后小組內(nèi)交流討論。由于學(xué)生對于應(yīng)用題的掌握太差,造成在這個環(huán)節(jié)浪費了太多的時間。
反思:因為本節(jié)課的重點和難點是解分式方程,所以在以后的教學(xué)中我個人認(rèn)為這一部分應(yīng)該不用。改為解簡單的整式方程,再給出幾個分式方程讓學(xué)生自己判斷直接得出分式方程的意義,節(jié)省出時間讓學(xué)生重點學(xué)習(xí)和練習(xí)解分式方程。本節(jié)課值得欣喜的是四班的優(yōu)生反應(yīng)靈敏,
四、讓學(xué)生自學(xué)課本例一,也就是解分式方程,分析課本做法的依據(jù),和自己的做法是在否一致,會用課本的方法解題??赐旰螅易寣W(xué)生自己做到導(dǎo)綱上。很多同學(xué)看完后還不是很理解,所以,我又讓小組自己討論了一下,弄明白如何做題。最后,我在黑板上板書了例題,然后,讓學(xué)生將自己的糾正一下。
反思:這個內(nèi)容是這節(jié)的重難點,由于前面已經(jīng)做過鋪墊,讓學(xué)生自己嘗試解過分式方程,所以,在這里我設(shè)想的是學(xué)生看完課本,明白教材的做法,自己會運用同樣的方法解決分式方程。但是,在實際的操作過程中,發(fā)現(xiàn)一個問題,同學(xué)們并沒有真正理解教材時怎么處理的,他們被第二環(huán)節(jié)中自己的做法禁錮住了,很多同學(xué)都先通分。通分很好,但通分的目的還是為了去分母。這點我沒有強調(diào)到位。同時,檢驗的過程我沒有板書在黑板,只是口頭強調(diào)了一下,致使很多學(xué)生印象不深,沒有進行檢驗。
糾正措施:重點強調(diào)化分式方程為整式方程的依據(jù)和做法。就這一步,安排幾個題進行專門訓(xùn)練,小組合作,直到每個組員都能找到最簡公分母,并會去掉分母為止。將第二課時提到這節(jié)點撥,在這節(jié)就讓學(xué)生明白分式方程為何要檢驗,從開始就讓學(xué)生養(yǎng)成檢驗的好習(xí)慣。
五、歸納解分式方程的一般步驟。根據(jù)上面的解題過程,小組總結(jié)出解題步驟。(在提示中,學(xué)生初步了解了大體步驟)
六、自學(xué)課本例二,弄明白后做到導(dǎo)綱上。
(這個環(huán)節(jié)設(shè)置的目的是讓學(xué)生進一步熟悉分式方程的解法。注意一些細(xì)節(jié)問題。)
七、鞏固練習(xí)。做導(dǎo)綱四道題。小組批閱。
八、總結(jié)這節(jié)課的知識。(由于前面進行不是很順利,總結(jié)有些匆忙)
總體反思
這節(jié)課是一堂新授課。因此,讓學(xué)生對知識有透徹的理解是最重要的。我們的導(dǎo)綱也設(shè)置了很多的環(huán)節(jié)來引導(dǎo)學(xué)生,提高學(xué)生的學(xué)習(xí)興趣。
本節(jié)課的關(guān)鍵是如何過渡,究竟是給學(xué)生一個完全自由的空間還是讓學(xué)生在老師的引導(dǎo)下去完成,“完全開放”符合設(shè)計思路,符合課改要求,但是經(jīng)過教學(xué)發(fā)現(xiàn),學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),因此,先講解,做示范,再練習(xí)更好些。
在教學(xué)過程中,由于種種原因,存在著不少的不足。
1、回顧引入部分題目有點多,難度有些高,沒有達(dá)到原來設(shè)想的調(diào)動積極性的作用。應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進,符合人類認(rèn)知規(guī)律。
2、由于經(jīng)驗不足,隨機應(yīng)變的能力有些欠缺,對在教學(xué)中出現(xiàn)的新問題,應(yīng)對的不理想,沒有立刻采取有效措施解決問題。例如,在復(fù)習(xí)整式方程時,學(xué)生并不像想象中對整式方程解題過程很了解,我就引導(dǎo)大家一起復(fù)習(xí)了一下,在這里,如果再臨時出幾個題目鞏固一下,效果也許更好些。
3、教學(xué)重點強調(diào)力度不夠。對學(xué)生理解消化能力過于相信,在看例一的過程中,每一步的依據(jù)都進行了講解,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進行專項訓(xùn)練或重點分析。例如,就學(xué)生的不同做法進行分析,讓他們明白課本的這種方法最簡單最方便。同時,通過板書示范分式方程的解題。
4、時間掌握不夠。備學(xué)生不夠充分,導(dǎo)致突發(fā)事件過多,時間被浪費了,以致總結(jié)過于匆忙。
這次的課讓我感觸頗深。在各位老教師無私地指導(dǎo)和細(xì)心地講評中,我更看到了自己的不足,在今后的教學(xué)中,我會多思考,充分的將“學(xué)生備好”,多積累經(jīng)驗,向老教師請教,培養(yǎng)自己應(yīng)對突發(fā)情況的能力,做個成功的“引導(dǎo)者”。
分式和方程教學(xué)反思篇8
本節(jié)課我主要采取“361”的課堂教學(xué)模式,讓學(xué)生自習(xí)的基礎(chǔ)上進上步加深對知識的掌握。這種學(xué)習(xí)模式符合課改要求,但是經(jīng)過教學(xué)發(fā)現(xiàn),以以往的教學(xué)中,學(xué)生在解分式方程時需要花費很長時間,學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),但本節(jié)課,通過學(xué)生的課前的預(yù)習(xí),節(jié)約的課堂上的時間。
教學(xué)上應(yīng)多用類比的方法,與分?jǐn)?shù)進行類比教學(xué),使學(xué)生明確分式與分?jǐn)?shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。
解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。至于解分式方程時產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗根的方法。
要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母。
在教學(xué)過程中,由于種種原因,存在著不少的.不足。
1、回顧引入部分題目有點多,應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進,符合人類認(rèn)知規(guī)律。
2、教學(xué)重點強調(diào)力度不夠。對學(xué)生理解消化能力過于相信,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進行專項訓(xùn)練或重點分析。例如,就學(xué)生的不同做法進行分析,讓他們明白課本的這種方法最簡單最方便。
3、時間掌握不太好。學(xué)生預(yù)習(xí)還不夠充分,導(dǎo)致突發(fā)事件過多,以致總結(jié)過于匆忙。