圓周角3教學(xué)反思5篇

時間:2023-04-20 作者:Indulgence 教學(xué)計劃

實用的教學(xué)反思是可以幫助我們及時發(fā)現(xiàn)自己教學(xué)過程中的不足的,教學(xué)反思是可以看出一個人對于已經(jīng)完成的教學(xué)任務(wù)的看法的,范文社小編今天就為您帶來了圓周角3教學(xué)反思5篇,相信一定會對你有所幫助。

圓周角3教學(xué)反思5篇

圓周角3教學(xué)反思篇1

教學(xué)目標(biāo):

(1)理解圓周角的概念,掌握圓周角的兩個特征、定理的內(nèi)容及簡單應(yīng)用;

(2)培養(yǎng)學(xué)生觀察、分析、想象、歸納和邏輯推理的能力;

(3)滲透由“特殊到一般”,由“一般到特殊”的數(shù)學(xué)思想方法。

教學(xué)重點:

圓周角的概念和圓周角定理

教學(xué)難點:

理解圓周角定理的證明

教學(xué)活動設(shè)計:

(在教師指導(dǎo)下完成)

(一)圓周角的概念

1、復(fù)習(xí)提問:

(1)什么是圓心角?

答:頂點在圓心的角叫圓心角。

(2)圓心角的度數(shù)定理是什么?

答:圓心角的度數(shù)等于它所對弧的度數(shù)。

2、引題圓周角:

如果頂點不在圓心而在圓上,則得到如左圖的新的角∠acb,它就是圓周角。(如右圖)

(演示圖形,提出圓周角的定義)

定義:頂點在圓周上,并且兩邊都和圓相交的角叫做圓周角

3、概念辨析:

教材p93中1題:判斷下列各圖形中的是不是圓周角,并說明理由。 學(xué)生歸納:一個角是圓周角的條件:

①頂點在圓上;

②兩邊都和圓相交。

(二)圓周角的定理

1、提出圓周角的度數(shù)問題

問題:圓周角的度數(shù)與什么有關(guān)系?

經(jīng)過電腦演示圖形,讓學(xué)生觀察圖形、分析圓周角與圓心角,猜想它們有無關(guān)系。引導(dǎo)學(xué)生在建立關(guān)系時注意弧所對的圓周角的三種情況:圓心在圓周角的一邊上、圓心在圓周角內(nèi)部

(1)當(dāng)圓心在圓周角的一邊上時,圓周角與相應(yīng)的圓心角的關(guān)系:(演示圖形)觀察得知圓心在圓周角上時,圓周角是圓心角的一半。

提出必須用嚴(yán)格的數(shù)學(xué)方法去證明。

(2)其它情況,圓周角與相應(yīng)圓心角的關(guān)系:

當(dāng)圓心在圓周角外部時(或在圓周角內(nèi)部時)引導(dǎo)學(xué)生作輔助線將問題轉(zhuǎn)化成圓心在圓周角一邊上的情況,從而運用前面的結(jié)論,得出這時圓周角仍然等于相應(yīng)的圓心角的結(jié)論。

證明:作出過c的直徑(略)

圓周角定理: 一條弧所對的

周角等于它所對圓心角的一半。

說明:這個定理的證明我們分成三種情況。這體現(xiàn)了數(shù)學(xué)中的分類方法;在證明中,后兩種都化成了第一種情況,這體現(xiàn)數(shù)學(xué)中的化歸思想。(對a層學(xué)生滲透完全歸納法)

(三)定理的應(yīng)用

1、例題: 如圖oa、ob、oc都是圓o的半徑, ∠aob=2∠boc。 求證:∠acb=2∠bac

讓學(xué)生自主分析、解得,教師規(guī)范推理過程。

說明:

①推理要嚴(yán)密;

②符號“”應(yīng)用要嚴(yán)格,教師要講清

2、鞏固練習(xí):

(1)如圖,已知圓心角∠aob=100°,求圓周角∠acb、∠adb的度數(shù)?

(2)一條弦分圓為1:4兩部分,求這弦所對的圓周角的度數(shù)? 說明:一條弧所對的圓周角有無數(shù)多個,卻這條弧所對的圓周角的度數(shù)只有一個,但一條弦所對的圓周角的度數(shù)只有兩個。

(四)總結(jié)

知識:

(1)圓周角定義及其兩個特征;

(2)圓周角定理的內(nèi)容。 在思想方法:一種方法和一種思想:

在證明中,運用了數(shù)學(xué)中的分類方法和“化歸”思想。分類時應(yīng)作到不重不漏;化歸思想是將復(fù)雜的問題轉(zhuǎn)化成一系列的簡單問題或已證問題。

(五)作業(yè) 教材p100中 習(xí)題a組6,7,8

教學(xué)反思

本節(jié)課是在圓的基本概念和性質(zhì)以及圓心角概念和性質(zhì)的基礎(chǔ)上,對圓周角的性質(zhì)進(jìn)行探索,圓周角性質(zhì)在圓的有關(guān)說理、作圖、計算中有著廣泛的應(yīng)用,也是學(xué)習(xí)圓的后續(xù)知識的重要預(yù)備知識,在教材中起著承上啟下的作用。同時,圓周角性質(zhì)也是說明線段相等,角相等的重要依據(jù)之一。

本節(jié)課的重點是圓周角的概念和經(jīng)歷探索圓周角性質(zhì)的過程,難點是合情推理驗證圓周角與圓心角的關(guān)系。在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大。而對圓周角與圓心角的關(guān)系理解起來則相對困難,特別是圓心在圓周角內(nèi)部、圓心在圓周角外部這兩種情況,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解。還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強(qiáng)調(diào),借助多媒體加以突出。此外,在知識的應(yīng)用過程中還應(yīng)引導(dǎo)學(xué)生注重前后知識的聯(lián)系,提高學(xué)生綜合運用知識的能力,培養(yǎng)學(xué)生對數(shù)學(xué)的應(yīng)用意識、創(chuàng)新意識。

本節(jié)課我設(shè)計了問題情境——自主探究——拓展應(yīng)用的課堂教學(xué)模式,以學(xué)生探究為主,配合多媒體輔助教學(xué)。在教學(xué)過程中,教師將問題式教學(xué)法,啟發(fā)式教學(xué)法,探究式教學(xué)法,情境式教學(xué)法,互動式教學(xué)法等多種教學(xué)方法融為一體,注重教學(xué)與生活的聯(lián)系,創(chuàng)設(shè)富有挑戰(zhàn)性的問題情境,引導(dǎo)學(xué)生用數(shù)學(xué)的眼光看問題,發(fā)現(xiàn)規(guī)律,驗證猜想。教學(xué)中注重學(xué)生的個體差異,讓不同層次的學(xué)生充分參與

到數(shù)學(xué)思維活動中來,充分發(fā)揮學(xué)生的主體作用。運用適度的激勵,幫助學(xué)生認(rèn)識自我,建立自信,不僅“學(xué)會”,而且“會學(xué)”“,樂學(xué)”。引導(dǎo)學(xué)生采用動手實踐,自主探究,合作交流的學(xué)習(xí)方法進(jìn)行學(xué)習(xí),使學(xué)生在觀察、實踐、問題轉(zhuǎn)化等數(shù)學(xué)活動中充分體驗探索的快樂,發(fā)現(xiàn)新知,發(fā)展能力。與此同時,教師通過適時的點撥、精講,使觀察、猜想、實踐、歸納、推理、驗證貫穿于整個學(xué)習(xí)過程之中。本節(jié)課不足的是,由于內(nèi)容較多,節(jié)奏有點快,可能有部分學(xué)生掌握的'不夠好,還需點時間鞏固練習(xí)。

圓周角3教學(xué)反思篇2

本節(jié)課我以學(xué)生探究為主,配合多媒體輔助教學(xué)、在教學(xué)過程中,我注重教學(xué)與生活的聯(lián)系,創(chuàng)設(shè)富有挑戰(zhàn)性的問題情境,引導(dǎo)學(xué)生用數(shù)學(xué)的眼光看問題,發(fā)現(xiàn)規(guī)律,驗證猜想、教學(xué)中注重學(xué)生的個體差異,讓不同層次的學(xué)生充分參與到數(shù)學(xué)思維活動中來,充分發(fā)揮學(xué)生的主體作用、引導(dǎo)學(xué)生采用動手實踐,自主探究,合作交流的學(xué)習(xí)方法進(jìn)行學(xué)習(xí),使學(xué)生在觀察、實踐中充分體驗探索的快樂,發(fā)現(xiàn)新知,發(fā)展能力、

這節(jié)課做的比較好的地方是:

1、教學(xué)環(huán)節(jié)設(shè)計比較合理,尤其是對圓周角定理證明的處理??紤]到定理的后兩種圖形證明難度大,考試要求低,班級基礎(chǔ)又弱,我采用了留作思考,個別點撥的方法,幫助學(xué)困生和中等生跳過這個“障礙",使得教學(xué)重難點沒有被沖淡,教學(xué)目標(biāo)比較明確,課時任務(wù)順利完成。

2、基本上做到讓學(xué)生講。在課堂上學(xué)生能說的老師不說,學(xué)生說不出來的老師引導(dǎo)著說,學(xué)生沒有想到的老師補(bǔ)充著說。3、小組4人合作使用合理。充分調(diào)動小組合作的積極性和有效性,利用角落的一點地方,進(jìn)行課堂評價,使學(xué)生課堂效率和學(xué)習(xí)積極性大增。

這節(jié)課還留有很多的遺憾:引入部分的時間過多,使得時間分配不當(dāng),學(xué)生的練習(xí)不夠充分。由于時間把握不好,導(dǎo)致設(shè)計的對于每個知識點都應(yīng)該有一個練習(xí)與之對應(yīng)沒有很好完成,使學(xué)生對本節(jié)課的幾個知識點不夠明確,應(yīng)用會有點生澀。

圓周角3教學(xué)反思篇3

本節(jié)課是在圓的基本概念和性質(zhì)以及圓心角概念和性質(zhì)的基礎(chǔ)上,對圓周角的性質(zhì)進(jìn)行探索,圓周角性質(zhì)在圓的有關(guān)說理、作圖、計算中有著廣泛的應(yīng)用,也是學(xué)習(xí)圓的后續(xù)知識的重要預(yù)備知識,在教材中起著承上啟下的作用.同時,圓周角性質(zhì)也是說明線段相等,角相等的重要依據(jù)之一.

本節(jié)課的重點是圓周角的概念和經(jīng)歷探索圓周角性質(zhì)的過程,難點是合情推理驗證圓周角與圓心角的關(guān)系.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大.而對圓周角與圓心角的關(guān)系理解起來則相對困難,特別是圓心在圓周角內(nèi)部、圓心在圓周角外部這兩種情況,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.此外,在知識的應(yīng)用過程中還應(yīng)引導(dǎo)學(xué)生注重前后知識的聯(lián)系,提高學(xué)生綜合運用知識的能力,培養(yǎng)學(xué)生對數(shù)學(xué)的應(yīng)用意識、創(chuàng)新意識.

本節(jié)課我設(shè)計了問題情境——自主探究——拓展應(yīng)用的課堂教學(xué)模式,以學(xué)生探究為主,配合多媒體輔助教學(xué).在教學(xué)過程中,教師將問題式教學(xué)法,啟發(fā)式教學(xué)法,探究式教學(xué)法,情境式教學(xué)法,互動式教學(xué)法等多種教學(xué)方法融為一體,注重教學(xué)與生活的聯(lián)系,創(chuàng)設(shè)富有挑戰(zhàn)性的問題情境,引導(dǎo)學(xué)生用數(shù)學(xué)的眼光看問題,發(fā)現(xiàn)規(guī)律,驗證猜想.教學(xué)中注重學(xué)生的個體差異,讓不同層次的學(xué)生充分參與到數(shù)學(xué)思維活動中來,充分發(fā)揮學(xué)生的主體作用.運用適度的激勵,幫助學(xué)生認(rèn)識自我,建立自信,不僅“學(xué)會”,而且“會學(xué)”,“樂學(xué)”.引導(dǎo)學(xué)生采用動手實踐,自主探究,合作交流的學(xué)習(xí)方法進(jìn)行學(xué)習(xí),使學(xué)生在觀察、實踐、問題轉(zhuǎn)化等數(shù)學(xué)活動中充分體驗探索的快樂,發(fā)現(xiàn)新知,發(fā)展能力.與此同時,教師通過適時的點撥、精講,使觀察、猜想、實踐、歸納、推理、驗證貫穿于整個學(xué)習(xí)過程之中.

本節(jié)課不足的是,由于內(nèi)容較多,節(jié)奏有點快,可能有部分學(xué)生掌握的不夠好,還需點時間鞏固練習(xí)。

圓周角3教學(xué)反思篇4

?數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出:“在掌握基礎(chǔ)知識的同時,感受數(shù)學(xué)的意義”提出了“重視從學(xué)生的生活經(jīng)驗和已有的知識中學(xué)習(xí)數(shù)學(xué)和理解數(shù)學(xué)”使學(xué)生感受到數(shù)學(xué)就在我們身邊,感受到數(shù)學(xué)的趣味、作用。

在我們的日常生活中,圓周角和圓心角的現(xiàn)象無處不在,對于這兩個概念的體驗尤為重要。反思這節(jié)課,我有以下體會:

1、重視聯(lián)系學(xué)生的生活實際,讓學(xué)生體驗到生活中處處有數(shù)學(xué)。

從觀察名牌汽車的標(biāo)志入手,還有自行車的車輪等等都是學(xué)生在生活中時時能看,處處能見的,通過這些圖形的形象演示,讓學(xué)生直觀看到真實的世界中的“圓周角和圓心角”,加強(qiáng)學(xué)生的感性認(rèn)識。

2、用多種感官感受數(shù)學(xué),培養(yǎng)數(shù)學(xué)情感。

學(xué)生在本課中不是用耳朵聽數(shù)學(xué),而是用眼睛觀察數(shù)學(xué)現(xiàn)象,通過數(shù)學(xué)教具的演示來理解數(shù)學(xué)知識,用數(shù)學(xué)知識解釋身邊的數(shù)學(xué)現(xiàn)象,在探討、交流、分析中獲得數(shù)學(xué)概念,拉近了抽象的數(shù)學(xué)概念與生活實際的距離。

3、重視數(shù)學(xué)知識的形成過程,讓學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂。

課中引導(dǎo)學(xué)生從三種情況進(jìn)行分析,推導(dǎo)圓周角定理的證明過程。定理學(xué)完后,馬上進(jìn)行適當(dāng)?shù)木毩?xí)加以鞏固,讓學(xué)生在思考與回答的過程中體會到學(xué)習(xí)數(shù)學(xué)的快樂。

存在的不足:

還可讓學(xué)生多一些動手操作的時間,給小老師多一些機(jī)會,在操作中加深對“圓周角定理推導(dǎo)過程”的體驗。

圓周角3教學(xué)反思篇5

我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中,在這本書的另一處,還記載了勾股定理的一般形式。中國古代的幾何學(xué)家研究幾何是為了實用,是唯用是尚的。在勾股定理教學(xué)中反思如下:

一轉(zhuǎn)變師生角色,讓學(xué)生自主學(xué)習(xí)。

由同學(xué)們的作圖,我們發(fā)現(xiàn)有的直角三角形的三邊具有這種關(guān)系,有的直角三角形不具有這種性質(zhì)。當(dāng)然作圖存在著誤差??扇匀蛔C明不了我們的猜想是否正確。下面我們用拼圖的方法再來驗證一下。請同學(xué)們拿出準(zhǔn)備好的直角三角形和正方形,利用拼圖和面積計算來證明a2+b2=c2(學(xué)生分組討論。)學(xué)生展示拼圖方法,課件輔助演示。

新課標(biāo)下要求教師個人素質(zhì)越來越高,教師自身要不斷及時地學(xué)習(xí)新知識,接受新信息,對自己及時充電、更新,而且要具有詼諧幽默的語言表達(dá)能力。既要有領(lǐng)導(dǎo)者的組織指導(dǎo)能力,更重要的是要有被學(xué)生欣賞佩服的魅力,只有學(xué)生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應(yīng)付自如,高效率完成教學(xué)目標(biāo)。

“教師教,學(xué)生聽,教師問,學(xué)生答,教室出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學(xué)生的實踐能力,而且會造成機(jī)械的學(xué)習(xí)知識,形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,新課標(biāo)要求老師一定要改變角色,變主角為配角,把主動權(quán)交給學(xué)生,讓學(xué)生提出問題,動手操作,小組討論,合作交流,把學(xué)生想到的,想說的想法和認(rèn)識都讓他們盡情地表達(dá),然后教師再進(jìn)行點評與引導(dǎo),這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會與日劇增。

數(shù)學(xué)的創(chuàng)造性不能沒有邏輯思維,學(xué)習(xí)數(shù)學(xué)可以幫助養(yǎng)成理性思考的習(xí)慣。數(shù)學(xué)并不是公式的堆壘,也不是圖形的匯集,數(shù)學(xué)有邏輯性很強(qiáng)的體系。數(shù)學(xué)不是只強(qiáng)調(diào)計算與規(guī)則的課程,而是講道理的課程。培養(yǎng)與運用邏輯思維,并不是不顧及學(xué)生的可接受性一味地片面強(qiáng)調(diào)推理的嚴(yán)密和體系的完整,而是既要體現(xiàn)邏輯推理的作用,又不片面夸大它。幾何的教學(xué)體系有別于幾何的科學(xué)體系,在幾何教學(xué)中,講道理并完全不等同于純粹的形式證明,幾何教學(xué)培養(yǎng)邏輯思維能力同樣要有的放矢,循序漸進(jìn),從直觀到抽象,從簡單到復(fù)雜?? 二轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會學(xué)習(xí)過程。

學(xué)生學(xué)會了數(shù)學(xué)知識,卻不會解決與之有關(guān)的實際問題,造成了知識學(xué)習(xí)和知識應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問題,對于學(xué)生實踐能力的培養(yǎng)非常不利的。現(xiàn)在的數(shù)學(xué)教學(xué)到處充斥著過量的、重復(fù)的、不斷循環(huán)的、人為挖掘的訓(xùn)練。 學(xué)習(xí)的過程性:

1.關(guān)注學(xué)生是否積極參加探索勾股定理的活動,關(guān)注學(xué)生能否在活動中積思考,能夠探索出解決問題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動過程和所獲得的結(jié)論等;

2.關(guān)注學(xué)生的拼圖過程,鼓勵學(xué)生結(jié)合自己所拼得的正方形驗證勾股定理. 學(xué)習(xí)的知識性:掌握勾股定理,體會數(shù)形結(jié)合的思想.

試一試:我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根新生的蘆葦,它高出水面1尺。如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面。請問這個水池的深度和蘆葦?shù)拈L度各是多少?

新課標(biāo)對幾何內(nèi)容的安排。安排采取了首先是直觀和經(jīng)驗,接著是說理與抽象,最后是演繹

的方案。以直線形為例,先借助直觀認(rèn)識一個直線形,進(jìn)而借助多種手段合乎情理地發(fā)現(xiàn)它的某種幾何性質(zhì),接著通過演繹推理把這個性質(zhì)搞定。看上去,強(qiáng)化了直觀和實驗,弱化了推理,實際上,在這里直觀和推理兩者都很重要,而且兩者之間互為支撐,有互逆的性質(zhì)。讓直觀幾何和推理幾何并重,把發(fā)現(xiàn)和證明綁在一起,與傳統(tǒng)的幾何課程體系確有不同。說到幾何,新課標(biāo)對幾何的重視程度絲毫沒有減弱,而是在加強(qiáng)。例如直觀和實驗幾何的觸角已經(jīng)伸向了小學(xué)低年級,同時歐氏幾何的體系和內(nèi)容差不多還是完整呈現(xiàn)。如果說有所弱化,就是具體要求降低了,這種降低主要體現(xiàn)在兩個方面,一個是對推理幾何的難度要求有所限制,另外是弱化了相似形和圓(包括圓與直線之間的關(guān)系)這塊內(nèi)容的證明部分。

教材內(nèi)容的豐富,充分激發(fā)了學(xué)生的學(xué)習(xí)積極性。教材編排了一些游戲性的智力題,引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,探索數(shù)學(xué)世界的奧秘,采用閱讀一些數(shù)學(xué)小故事和數(shù)學(xué)發(fā)展史,豐富學(xué)生的數(shù)學(xué)知識和對世界數(shù)學(xué)文化的了解,充分激發(fā)了學(xué)生繼續(xù)學(xué)習(xí)數(shù)學(xué)和發(fā)展數(shù)學(xué)的積極性,把生活中的實物抽象成幾何圖形,讓學(xué)生了解豐富變幻的圖形世界,培養(yǎng)了學(xué)生抽象思維能力,特別側(cè)重于培養(yǎng)學(xué)生認(rèn)識事物,探索問題,解決實際的能力。讓學(xué)生感興趣且愿意學(xué),并且接受知識是循序漸進(jìn)的過程,隨著數(shù)學(xué)知識的不斷學(xué)習(xí),也使學(xué)生親身體會到了學(xué)習(xí)數(shù)學(xué)的重要意義:我們的生活中處處離不開數(shù)學(xué),處處需要數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)也是非常有意思的。三提高教學(xué)科技含量,充分利用多媒體。

幾何圖形可以直觀地表示出來,人們認(rèn)識圖形的初級階段中主要依靠形象思維。遠(yuǎn)古時期人們對幾何圖形的認(rèn)識始于觀察、測量、比較等直觀實驗手段,現(xiàn)代兒童認(rèn)識幾何圖形亦如此,人們可以通過直觀實驗了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。然而,因為幾何圖形本身具有抽象性和一般性,一種幾何概念可能包含無限多種不同的情形,例如有無數(shù)種形狀不同的三角形。對一種幾何概念所包含的一部分具體對象進(jìn)行直觀實驗所得到的認(rèn)識,一定適合其他情況驗回答不了的問題。因此,一般地,研究圖形的形狀、大小和位置.

培養(yǎng)邏輯推理能力,作了認(rèn)真的考慮和精心的設(shè)計,把推理證明作為學(xué)生觀察、實驗、探究得出結(jié)論的自然延續(xù)。在這套教科書的幾何部分,七年級上、下兩冊要先后經(jīng)歷“說點兒理”“說理”“簡單推理”幾個層次,有意識地逐步強(qiáng)化關(guān)于推理的初步訓(xùn)練,主要做法是在問題的分析中強(qiáng)調(diào)求解過程所依據(jù)的道理,體現(xiàn)事出有因、言之有據(jù)的思維習(xí)慣。

由于信息技術(shù)的發(fā)展與普及,直觀實驗手段在教學(xué)中日益增加,有些學(xué)校還建立了“數(shù)學(xué)實驗室”,這些對于幾何學(xué)的學(xué)習(xí)起到積極作用。隨著教學(xué)研究的不斷深入,直觀實驗會在啟發(fā)誘導(dǎo)、化難為易、檢驗猜想等方面進(jìn)一步大顯身手。但是,直觀實驗終歸是數(shù)學(xué)學(xué)習(xí)的輔助手段,數(shù)學(xué)畢竟不是實驗科學(xué),它不能象物理、化學(xué)、生物等學(xué)科那樣最后通過實驗來確定結(jié)論。實驗幾何只是學(xué)習(xí)幾何學(xué)的前奏曲或第一樂章,后面的樂曲建立在理性思維基礎(chǔ)上,邏輯推理是把演奏推向高潮的主要手段。

四轉(zhuǎn)變評價手段,讓每個學(xué)生找到學(xué)習(xí)數(shù)學(xué)的自信。

評價就其實質(zhì)來講,乃是一種監(jiān)控機(jī)制。這種反饋監(jiān)控機(jī)制包括"他律"與"自律"兩個方面。所謂"他律"是以他人評價為基礎(chǔ)的,"自律"是以自我評價為基礎(chǔ)的。每個人素質(zhì)生成都經(jīng)歷著一個從"他律"到"自律"的發(fā)展過程,經(jīng)歷著一個從學(xué)會評價他人到學(xué)會評價自己的發(fā)展過程。實施他人評價,完善素質(zhì)發(fā)展的他人監(jiān)控機(jī)制很有必要。每個人都要以他人為鏡,從他人這面鏡子中照見自我。但發(fā)展的成熟、素質(zhì)的完善主要建立在自律的基礎(chǔ)上,是以素質(zhì)的自我評價、自我調(diào)節(jié)、自我教育為標(biāo)志的。因此要改變單純由教師評價的現(xiàn)狀,提倡評價主體的多元化,把教師評價、同學(xué)評價、家長評價及學(xué)生的自評相結(jié)合。尤其要突出學(xué)生的自評,提高他們的自我認(rèn)識、自我調(diào)節(jié)、自我評價的能力,增強(qiáng)反思意識,培養(yǎng)健康的心理。 注重數(shù)學(xué)與生活的聯(lián)系,從學(xué)生認(rèn)知規(guī)律和接受水平出發(fā),這些理念貫徹到教材與課堂教學(xué)當(dāng)中,很好地激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。學(xué)生們善于提出問題、敢于提出問題、解決問題的能力強(qiáng),已經(jīng)成為數(shù)學(xué)新課標(biāo)下學(xué)生表現(xiàn)的一個標(biāo)志。

通過學(xué)習(xí)幾何可以認(rèn)識豐富多彩的幾何圖形,建立與發(fā)展空間觀念,掌握必要的幾何知識,培養(yǎng)運用這些知識認(rèn)識世界與改造世界的能力。但是,這些并不是幾何學(xué)的全部教育功能。從更深層次看,學(xué)習(xí)幾何學(xué)的一個重要的作用是:以幾何圖形為載體,培養(yǎng)邏輯思維能力,提高理性思維水平。這正是自古希臘開始幾何教學(xué)一直倍受重視的主要原因。

從實際需要看,一個普通人一生中運用幾何知識的時間、場合,要比他應(yīng)該運用邏輯思維的時間、場合少得多。前者在特定的環(huán)境下發(fā)生,而后者經(jīng)常地、普遍地出現(xiàn),它的作用遠(yuǎn)比前者大得多。一個人學(xué)過幾何后,如果不繼續(xù)從事與數(shù)學(xué)關(guān)系密切的學(xué)習(xí)或工作,他一生中有可能很少甚至不會用到在某個幾何定理,但是他肯定應(yīng)該經(jīng)常不斷地在不同程度上使用邏輯推理來分析問題。當(dāng)然,其他課程也可以培養(yǎng)學(xué)生的邏輯思維能力,學(xué)習(xí)幾何學(xué)并不是實現(xiàn)此目的之唯一途徑。但是,長期以來幾何學(xué)被普遍認(rèn)為是適合培養(yǎng)邏輯思維能力的絕好課程是客觀事實。形成這種狀況的原因主要有:幾何學(xué)的歷史悠久,學(xué)科體系成熟;幾何學(xué)體系的邏輯性特點格外突出;幾何學(xué)的研究對象是幾何圖形,結(jié)合幾何圖形,利用圖形語言,在一定程度上可以降低認(rèn)識和理解邏輯推理的難度。

按照人的一般認(rèn)知規(guī)律,認(rèn)識幾何圖形的過程,也是從具體到抽象,從簡單到復(fù)雜,從特殊到一般,從感性到理性的過程。根據(jù)教育心理學(xué)的規(guī)律可知,初中學(xué)生多處于認(rèn)識方法發(fā)生升華的階段,他們對事物的認(rèn)識已不滿足于表面的、孤立的層次,而有了向更深層次發(fā)展的要求,即向往“由此及彼,由表及里”的思維方式。從幾何教學(xué)的內(nèi)容看,學(xué)生們從小學(xué)開始已經(jīng)通過直觀實驗這種主要方式學(xué)習(xí)了基礎(chǔ)的圖形知識,在他們的頭腦中已經(jīng)積累了一定的關(guān)于圖形的感性認(rèn)識,在初中階段應(yīng)該更深入地在“為什么”的層面上認(rèn)識圖形。顯然,單純的直觀實驗這種學(xué)習(xí)方式已經(jīng)不適應(yīng)繼續(xù)深入學(xué)習(xí)的需要,因為這種方式難以真正從道理上對圖形規(guī)律進(jìn)行解釋,而邏輯推理的方式才能擔(dān)此重任。因此,從“實驗幾何”向“推理幾何”的過渡成為初中幾何教學(xué)必須面對的問題,培養(yǎng)邏輯推理能力成為初中幾何教學(xué)必須實現(xiàn)的教學(xué)目標(biāo)。

認(rèn)識幾何圖形既需要形象思維,又需要抽象思維,兩者相輔相成。雖然我們強(qiáng)調(diào)幾何教學(xué)中邏輯推理的重要性,但是并不排斥直觀實驗。直觀實驗是初級認(rèn)識手段,邏輯推理是高級認(rèn)識手段?!翱匆豢础薄傲恳涣俊薄白鲆蛔觥钡戎庇^實驗活動在幾何學(xué)習(xí)的初始階段的重要性尤為突出,即使在推理幾何階段的學(xué)習(xí)中,直觀實驗也具有重要的輔助作用,人們常借助某些直觀特例來發(fā)現(xiàn)一般規(guī)律、探尋證明思路、理解抽象內(nèi)容,有時直觀實驗與邏輯推理是交替進(jìn)行的。

讓學(xué)生享受數(shù)學(xué)的有趣:可利用愉快的游戲、生動的故事、激烈的競賽、入境的表演、熱情的掌聲等創(chuàng)設(shè)出一種愉悅的學(xué)習(xí)情境,誘發(fā)學(xué)生的學(xué)習(xí)情趣;讓學(xué)生時常感受到“數(shù)學(xué)真奇妙!”,從而產(chǎn)生“我也想試一試!”的心理。

讓學(xué)生享受數(shù)學(xué)的有用:借助生活情境,讓學(xué)生尋找有關(guān)的數(shù)學(xué)問題,使學(xué)生體會到我們的生活中蘊(yùn)涵著豐富的數(shù)學(xué)問題,感受數(shù)學(xué)學(xué)習(xí)在生活中的作用。

讓學(xué)生享受數(shù)學(xué)的精彩:創(chuàng)設(shè)一切機(jī)會讓學(xué)生學(xué)會思考,樂于思考、善于思考,只有這樣,數(shù)學(xué)才能展示其精彩的一面;在教學(xué)中可有意識地安排一些問題讓學(xué)生多途徑思考,發(fā)現(xiàn)答案有多種多樣;讓他們體味出更多的精彩!享受數(shù)學(xué)的成功:“教育教學(xué)的本質(zhì)就是幫助學(xué)生成功?!币淮纬晒Φ臋C(jī)會卻可以十倍地增強(qiáng)學(xué)生的信心;因此,課堂上教師應(yīng)毫不吝嗇自己鼓勵的眼神、贊許的話語,批改作業(yè)時盡量少一些令人生厭的“×”,可以寫上“再算算”。