作為一名教師首先你要明白什么是教學(xué)反思,寫一篇高質(zhì)量的教學(xué)反思對我們今后的教學(xué)工作有很大幫助,下面是范文社小編為您分享的找最大公因數(shù)的教學(xué)反思8篇,感謝您的參閱。
找最大公因數(shù)的教學(xué)反思篇1
本節(jié)課的教學(xué)內(nèi)容是求兩個數(shù)的公因數(shù)和兩個數(shù)的最大公因數(shù)的第二課時。教學(xué)目標是進一步理解兩個數(shù)的公因數(shù)和最大公因數(shù)的意義,比較熟練地求出兩個數(shù)的最大公因數(shù),包括兩種特殊情況。這節(jié)課上的非常順利,課堂氣氛活躍,師生互動和諧,取得了較好的課堂教學(xué)效果。
上課的第一環(huán)節(jié),是復(fù)習(xí)兩個數(shù)的公因數(shù)和最大公因數(shù)的意義。在復(fù)習(xí)的過程中,我不是單純地讓學(xué)生復(fù)述兩個數(shù)的公因數(shù)和最大公因數(shù)的意義,而是讓學(xué)生舉例說明。學(xué)生說出了許多組數(shù),找出了它們的公因數(shù)和最大公因數(shù)。在學(xué)生舉例的過程中,對它們的意義有了更深的理解。我擇其四組板書在黑板上:4和5,5和6,5和7,7和9。讓學(xué)生觀察,這四組數(shù)有什么特點。我的本意是讓學(xué)生發(fā)現(xiàn)兩個數(shù)的最大公因數(shù)的一種特殊情況,即兩個數(shù)的公因數(shù)只有1,那么它們的最大公因數(shù)就是1。 “我發(fā)現(xiàn)兩個數(shù)中只要有一個質(zhì)數(shù),它們的最大公因數(shù)就是1?!边@是一個大膽的猜測,雖說是出乎意料,但更使課堂充滿了生機。我讓學(xué)生判斷他的觀點是否正確。在小組討論的過程中,有學(xué)生提出了質(zhì)疑,“這個觀點不對,比如2和4,2是質(zhì)數(shù),但它倆的最大公因數(shù)不是1。”又有學(xué)生提出3和6,5和10等。我接著又讓學(xué)生觀察,這幾組數(shù)又有什么特點。通過通論觀察,完成了本節(jié)課的另一個教學(xué)任務(wù),發(fā)現(xiàn)了兩個數(shù)的最大公因數(shù)的另一種特殊情況,即兩個數(shù)是倍數(shù)關(guān)系,那么它們的最大公因數(shù)就是較小的數(shù),學(xué)生發(fā)現(xiàn)了兩個數(shù)的最大公因數(shù)的幾種情況,當兩個數(shù)都是質(zhì)數(shù)時,它們的最大公因數(shù)是1;當兩個數(shù)是連續(xù)的自然數(shù)時,它們的最大公因數(shù)是1;兩個數(shù)的最大公因數(shù)是1,這兩個數(shù)可以是質(zhì)數(shù),也可以是合數(shù),還可以一個是質(zhì)數(shù),一個是合數(shù),等等。
找最大公因數(shù)的教學(xué)反思篇2
本課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進行教學(xué),通過找公因數(shù)的過程,讓學(xué)生懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,為了加深理解,可以進一步引導(dǎo)學(xué)生觀察分析、討論,讓學(xué)生明確找兩個數(shù)公因數(shù)的方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗。在此過程中要注意鼓勵每一個學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的語言表述自己的發(fā)現(xiàn),但不要歸納成固定的模式讓學(xué)生記憶。對于找公因數(shù)有困難的學(xué)生,教師要從方法上作進一步指導(dǎo)?!稊?shù)學(xué)課程標準》指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者?!痹诒竟?jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計成為學(xué)生探索問題,解決問題的過程,這樣設(shè)計各個環(huán)節(jié)的教學(xué)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個教學(xué)的過程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過學(xué)生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學(xué)生個性得到發(fā)揮,課堂成了學(xué)習(xí)的天地。
找最大公因數(shù)的教學(xué)反思篇3
教學(xué) 例3時先用邊長6厘米和4厘米的正方形紙片,分別鋪長18厘米、寬12厘米的長方形,教師選擇正方形紙片鋪長方形的活動教學(xué)公因數(shù),是因為這一活動能吸引學(xué)生發(fā)現(xiàn)和提出問題,能引導(dǎo)學(xué)生思考。學(xué)生用同兩張正方形紙片分別鋪一個不同的長方形,面對出現(xiàn)的兩種結(jié)果,會發(fā)現(xiàn)“為什么有時正好鋪滿、有時不能”,“什么時候正好鋪滿、什么時候不能”這些有研究價值的問題。他們沿著長方形的邊鋪正方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關(guān),于是產(chǎn)生進一步研究長方形邊長和正方形邊長關(guān)系的愿望。分析長方形的長、寬和正方形邊長之間的關(guān)系,按學(xué)生的認知規(guī)律,設(shè)計成兩個層次: 第一個層次聯(lián)系鋪的過程與結(jié)果,從長方形的長、寬除以正方形的邊長沒有余數(shù)和有余數(shù)的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據(jù)邊長6厘米的正方形正好鋪滿長18厘米、寬12厘米的長方形、而邊長4厘米的正方形不能正好鋪滿長18厘米、寬12厘米的長方形的經(jīng)驗,聯(lián)想邊長幾厘米的正方形還能正好鋪滿長18厘米、寬12厘米的長方形。先找到這些正方形,把它們邊長從小到大排列,知道這樣的正方形的個數(shù)是有限的。再用“既是12的因數(shù),又是18的因數(shù)”概括地描述這些正方形邊長的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對后一層次的抽象認識有重要的支持作用。
反思:突出概念的內(nèi)涵、外延,讓學(xué)生準確理解概念。
我用“既是……又是……”的描述,讓學(xué)生理解“公有”的意思。例3先聯(lián)系用邊長1、2、3、6厘米的正方形正好能鋪滿長18厘米、寬12厘米的長方形紙片的現(xiàn)象,從長方形的長、寬分別除以正方形邊長都沒有余數(shù),得出正方形的邊長“既是12的因數(shù),又是18的因數(shù)”,一方面概括了這些正方形邊長的特點,另一方面讓學(xué)生體會“既是……又是……”的意思。然后進一步概括 “1、2、3、6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)”,形成公因數(shù)的概念。
由于知識的遷移,學(xué)生很容易想到用集合圖直觀形象地顯示公因數(shù)的含義。第27頁把8的因數(shù)和12的因數(shù)分別寫到兩個集合圈里,這兩個集合圈有一部分重疊,在重疊部分里寫的數(shù)既是8的因數(shù),也是12的因數(shù),是8和12的公因數(shù)。先觀察這個集合圖,再填寫第28頁的集合圖,學(xué)生能進一步體會公因數(shù)的含義。概念的外延是指這個概念包括的一切對象。
運用數(shù)學(xué)概念,讓學(xué)生探索找兩個數(shù)的最大公因數(shù)的方法。
例4教學(xué)求兩個數(shù)的最大公因數(shù),出現(xiàn)了兩種解決問題的方法。學(xué)生有的先分別寫出8和12的因數(shù),再找出它們的公因數(shù)和最大公因數(shù)。有的在8的因數(shù)里找12的因數(shù),這樣操作比較方便,但容易遺漏。我有意引導(dǎo)學(xué)生選擇第一種。練習(xí)五的第3題就是這種方法的應(yīng)用。
充分利用教育資源,自制課件,協(xié)助教學(xué)。
限于操作的局部性,我認真制作了實用的課件,讓直觀、清晰的頁面直接輔助我教學(xué),學(xué)生表現(xiàn)積極,課堂氣氛比較活躍,提問、釋疑、解惑,練習(xí)的熱情很高。
本課設(shè)計目的是使學(xué)生學(xué)習(xí)公因數(shù)、最大公因數(shù)的意義,并學(xué)會找兩個數(shù)的最大公因數(shù)的方法,從整節(jié)課學(xué)生表現(xiàn)情況和課后作業(yè)反饋來看,學(xué)生對本部分知識知識掌握較好,學(xué)習(xí)積極并具有熱情,就實效性講很令人滿意。
找最大公因數(shù)的教學(xué)反思篇4
公因數(shù)和最大公因數(shù)這一課應(yīng)注重引導(dǎo)學(xué)生體驗“概念形成”的過程,讓學(xué)生“研究學(xué)習(xí)”、“自主探索”,學(xué)生不應(yīng)是被動接受知識的容器,而應(yīng)是在學(xué)習(xí)過程中主動積極的`參與者,是認知過程的探索者,是學(xué)習(xí)活動的主體。
我是這樣組織教學(xué)的:
在教學(xué)過程中,我們不僅要求學(xué)生掌握抽象的數(shù)學(xué)結(jié)論,更應(yīng)注重學(xué)生概念形成的過程。應(yīng)引導(dǎo)學(xué)生參與探討知識的形成過程,盡可能挖掘?qū)W生潛能,能讓學(xué)生通過努力,自己解決問題,形成概念。通過創(chuàng)設(shè)生活情境,幫助王叔叔鋪地裝,將學(xué)生自然地帶入求知的情境中去,在學(xué)生已有知識經(jīng)驗的基礎(chǔ)上放手讓學(xué)生去交流、探索?!澳囊粋€正方形紙片能正好鋪滿長16厘米寬12厘米的長方形,為什么?”這樣更利于培養(yǎng)學(xué)生自主探索、提出問題和解決問題的能力。接著進一步引導(dǎo)學(xué)生思考“還有哪些正方形紙片也能正好鋪滿長16厘米寬12厘米的長方形?”“為什么邊長是1厘米、2厘米、4厘米的地磚可以正好鋪滿?而邊長是3厘米的正方形地磚不能正好鋪滿?”讓學(xué)生在反復(fù)地思考和交流中加深對公因數(shù)這一概念的理解。
教師拋出問題后,讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動了已有知識經(jīng)驗、方法、技能,找出“16和12的公因數(shù)和最大公因數(shù)”。在這個過程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識。
思考:
1.增強師生和生生之間的互動
在教學(xué)過程中各個環(huán)節(jié)的銜接不夠緊湊,本課時的教學(xué)內(nèi)容比較枯燥,在課堂上如何調(diào)動學(xué)生的積極性,活躍課堂氣氛,使學(xué)生學(xué)的輕松、扎實。今后的教學(xué)中,在這一點上要都多下功夫。本課時的教學(xué)中,在組織學(xué)生交流找“16和12的公因數(shù)”的方法時,指名回答的形式過于單調(diào),有的同學(xué)沒有選著擺一擺的方法,而是直接用邊長去除以小正方形邊長來判斷,我沒有很好利用學(xué)生生成的資源,幫助學(xué)生理解,局限學(xué)生的思維發(fā)展。
2.方法多樣化和方法優(yōu)化
在組織學(xué)生進行交流時,應(yīng)該注重引導(dǎo)學(xué)生有層次地介紹各種不同的方法。同時還要引導(dǎo)學(xué)生進行方法的比較和優(yōu)化。
找最大公因數(shù)的教學(xué)反思篇5
這節(jié)課是在學(xué)習(xí)了公因數(shù)和最大公因數(shù)之后教學(xué)的,在實際教學(xué)中我發(fā)現(xiàn)學(xué)生不能靈活利用最大公因數(shù)的知識解決實際問題,有的同學(xué)一看到求最大、最多、最長是多少,便不假思索,直接求它們的最大公因數(shù),至于為什么是求最大公因數(shù),有的同學(xué)不理解,或是知其然而不知其所以然。基于此,我設(shè)計了這節(jié)課。在教學(xué)中,我努力做大了以下幾點:
1、借助操作活動,讓學(xué)生形成解決問題的策略。在教學(xué)中,我以學(xué)生感興趣的六一節(jié)活動貫穿始終,讓學(xué)生在積極、歡愉的氛圍中學(xué)習(xí)。通過給學(xué)生提供具體的材料,讓他們利用已有的材料,剪一剪、畫一畫、折一折、想一想、算一算,用不同的方法來解決問題。從動手操作中理解要解決這個問題,實質(zhì)上是求已知數(shù)量的最大公因數(shù),并結(jié)合課件演示明確為什么是求最大公因數(shù)。提升了學(xué)生的思維層次。再通過后面的嘗試應(yīng)用,練一練,靈活應(yīng)用等環(huán)節(jié)進一步明確思路。學(xué)生在解決問題的過程中獲得感悟,初步形成解決此類問題的策略。
2、預(yù)設(shè)探究過程,增強學(xué)生的主體意識。嘗試應(yīng)用環(huán)節(jié)更是學(xué)生自主探究的廣闊平臺,我拋出問題后讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動已有知識經(jīng)驗、方法、技能,八仙過海各顯神通,找出各種求正方形的邊長最長是多少的方法,從中再次體驗到要解決這個問題實質(zhì)上還是求已知數(shù)量的最大公因數(shù)。整個教學(xué)過程學(xué)生能主動的建構(gòu)知識,而不是簡單模仿,充分體現(xiàn)了學(xué)生是課堂學(xué)習(xí)的主人,課堂是學(xué)生學(xué)習(xí)的天地。
3、教學(xué)中我充分發(fā)揮小組合作學(xué)習(xí)能力,給學(xué)生充分的交流與研究時間,讓學(xué)生在交流展示中明確解決此類問題的策略,達到把復(fù)雜的問題變得簡單,把簡單的問題變得有厚度。
找最大公因數(shù)的教學(xué)反思篇6
公因數(shù)與最大公因數(shù)這一課教材設(shè)計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學(xué)生在解決實際問題中探索公因數(shù)的認識。因此,在教學(xué)中要重視通過嘗試解決問題讓學(xué)生聯(lián)系已有的知識來引入公因數(shù)的認識。使學(xué)生初步體會學(xué)習(xí)公因數(shù)在解決實際問題中有著重要作用。
這節(jié)課的上課情況感覺較好,課堂比較流暢,重難點也都注意到了,但是通過學(xué)生作業(yè)反饋情況來看,部分學(xué)生在尋找公因數(shù)和最大公因數(shù)時,容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時,部分學(xué)生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進去,這一情況在預(yù)設(shè)時我雖然想到了學(xué)生會錯,也在課堂上進行了說明,但是少數(shù)學(xué)生還是出現(xiàn)了錯誤。
用例舉的策略找出所有公因數(shù)的教學(xué)中,教材上有種層次不同學(xué)生可以掌握的方法參考,在這里的教學(xué)中我只是參照教材注重了這兩種方法的講解,這里教材的應(yīng)是要求學(xué)生有序地列舉就行了,不同水平的學(xué)生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學(xué)時,有些學(xué)生運用了一些比較獨特的方法尋找公因數(shù),教師應(yīng)該給予肯定,說明只要有序地列舉出因數(shù)來尋找公因數(shù)就可以了。但是,對于學(xué)生出現(xiàn)的各種方法可以讓學(xué)生進行對比,體會哪種方法更好,更適合自己,進而對自己的算法進行優(yōu)化。
找最大公因數(shù)的教學(xué)反思篇7
“因數(shù)和倍數(shù)”的知識,向來是小學(xué)數(shù)學(xué)教學(xué)的難點?!白畲蠊驍?shù)”這節(jié)課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進行的,通過這節(jié)課的學(xué)習(xí),學(xué)生會說出兩個數(shù)的公因數(shù)和最大公因數(shù),會求兩個數(shù)的最大公因數(shù),并為后面學(xué)習(xí)分數(shù)的約分打好基礎(chǔ)。反思這節(jié)課我認為有以下幾點:
一、精心設(shè)計數(shù)學(xué)活動,讓學(xué)生大膽探究。
1、通過找8和12的因數(shù),引出公因數(shù)的概念。
教師引導(dǎo)學(xué)生先寫出8和12的因數(shù),再觀察發(fā)現(xiàn)8和12有公有的因數(shù),自然引出了公因數(shù)的概念。然后通過集合圈的形式,直觀呈現(xiàn)什么是公因數(shù),什么又是最大公因數(shù)。促進學(xué)生建立”公因數(shù)和最大公因數(shù)”的概念。
2、通過找18和27的最大公因數(shù),掌握找最大公因數(shù)的方法。
掌握了公因數(shù)的概念之后,教師放手給予學(xué)生足夠的時間,讓學(xué)生自主探究找最大公因數(shù)的方法。交流反饋時,考慮到中下水平的學(xué)生,教師只匯報了書本中的三種基本方法,并沒有提到短除法。
二、思路清晰,環(huán)環(huán)相扣。
本節(jié)課,教師從認識公因數(shù)——理解最大公因數(shù)——探究找最大公因數(shù)的方法——相應(yīng)的練習(xí)鞏固這幾個環(huán)節(jié)入手,每個環(huán)節(jié)都是層層遞進,環(huán)環(huán)相扣,促進了學(xué)生對概念的理解。
?數(shù)學(xué)課程標準》指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者?!痹诒竟?jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計成為學(xué)生探索問題,解決問題的過程,各個環(huán)節(jié)的學(xué)習(xí)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個教學(xué)的過程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過學(xué)生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學(xué)生個性得到發(fā)揮。
找最大公因數(shù)的教學(xué)反思篇8
教材共提供了三種不同的方式求兩個數(shù)的最大公因數(shù),方法一:分別寫出兩個數(shù)的因數(shù),再找最大公因數(shù);方法二:先找出一個數(shù)的所有因數(shù),再看哪些因數(shù)是另一個數(shù)的因數(shù),最后從中找出最大的;方法三:用分解質(zhì)因數(shù)的方法找兩個數(shù)的最大公因數(shù)。我還給學(xué)生補充了用短除法求最大公因數(shù)。這么多方法,教師應(yīng)該向?qū)W生重點推薦哪種呢?教材中補充拓展的分解質(zhì)因數(shù)方法學(xué)生是否都應(yīng)掌握呢?短除法是否都應(yīng)掌握呢?方法一與方法二相比,由于第一種方法便于觀察比較,十分直觀。因此,在課堂教學(xué)中許多學(xué)生暗暗地就選擇了它。方法二與方法三相比,在數(shù)據(jù)偏大且因數(shù)較多時,如果用分解質(zhì)因數(shù)的方法來求最大公因數(shù)不僅正確率高,而且速度也會大幅提高。但是用分解質(zhì)因數(shù)的方法來求最大公因數(shù)對一些學(xué)生來說又有相當?shù)碾y度,至于為什么要把兩個數(shù)全部公有的質(zhì)因數(shù)相乘,一些學(xué)生還不太明白。
在教學(xué)中,我認為教師不能僅僅只是介紹,還有必要讓學(xué)生們掌握這種方法技能。用短除法求最大公因數(shù)我感覺比較簡單,學(xué)生好接受,好理解。但是短除法求最大公因數(shù)一直要除到所得的商是互質(zhì)數(shù)時為止。如果用此法,學(xué)生必須首先認識“互質(zhì)數(shù)”,并能正確判斷。雖然有關(guān)“互質(zhì)數(shù)”的內(nèi)容教材83頁“你知道嗎”中有所涉及,相應(yīng)知識的考查在練習(xí)十五第6題中也有所體現(xiàn)。至于學(xué)生選用哪種策略找兩個數(shù)的最大公因數(shù),我并不強求。從作業(yè)反饋情況來看,多數(shù)學(xué)生更喜歡方法一,但是我們要提醒學(xué)生養(yǎng)成先觀察數(shù)據(jù)特點,然后再動筆的習(xí)慣。如兩個數(shù)正好成倍數(shù)關(guān)系或互質(zhì)數(shù)關(guān)系時,許多學(xué)生仍舊按部就班地采用一般策略來解決,全班只有少數(shù)的學(xué)生能夠根據(jù)“當兩個數(shù)成倍數(shù)關(guān)系時,較小數(shù)就是它們的最大公因數(shù)”的規(guī)律快速找到最大公因數(shù)。在這一方面,教師在教學(xué)中要率先垂范,做好榜樣。在鞏固練習(xí)過程中,也應(yīng)加強訓(xùn)練,每次動筆練習(xí)之前補充一個環(huán)節(jié)——觀察與思考。使學(xué)生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來。
這節(jié)課本來想把教材練習(xí)十五的習(xí)題講解完,但是時間不夠用了,只好下節(jié)課再講。