七年級上冊整式的加減教案6篇

時間:2022-11-02 作者:Animai 備課教案

在上課前擁有一份詳細(xì)的教案是可以讓我們有很大的安全感的,通過教案的書寫,我們能將自己的教學(xué)目標(biāo)表達(dá)出來,以下是范文社小編精心為您推薦的七年級上冊整式的加減教案6篇,供大家參考。

七年級上冊整式的加減教案6篇

七年級上冊整式的加減教案篇1

(一)教材所處的地位

人教版《數(shù)學(xué)》七年級上冊第二章,本章由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運算的基礎(chǔ),也是學(xué)習(xí)方程、不等式和函數(shù)的基礎(chǔ)。

(二)單元教學(xué)目標(biāo)

(1)理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

(2)理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進(jìn)行同類項的合并和去括號。在準(zhǔn)確判斷、正確合并同類項的基礎(chǔ)上,進(jìn)行整式的加減運算。

(3)理解整式中的字母表示數(shù),整式的加減運算建立在數(shù)的運算基礎(chǔ)上;理解合并同類項、去括號的依據(jù)是分配律;理解數(shù)的運算律和運算律性質(zhì)在整式的加減運算中仍然成立。

(4)能分析實際問題中的數(shù)量關(guān)系,并列出整式表示 .體會用字母表示數(shù)后,從算術(shù)到代數(shù)的進(jìn)步。

(5)滲透數(shù)學(xué)知識來源于生活,又要為生活而服務(wù)的辯證觀點;通過由數(shù)的加減過渡到整式的加減的過程,培養(yǎng)學(xué)生由特殊到一般的思維;體會整式的加減實質(zhì)上就是去括號,合并同類項,結(jié)果總是比原來簡潔,體現(xiàn)了數(shù)學(xué)的簡潔美。

(三)單元教學(xué)的重難點

(1)重點:理解單項式、多項式的相關(guān)概念;熟練進(jìn)行合并同類項和去括號的運算。

(2)難點:準(zhǔn)確地進(jìn)行合并同類項,準(zhǔn)確地處理去括號時的符號。

(四)單元教學(xué)思路及策略

(1)注意與小學(xué)相關(guān)內(nèi)容的銜接。

(2)加強與實際的聯(lián)系。

(3)類比“數(shù)”學(xué)習(xí)“式”,加強知識的內(nèi)在聯(lián)系,重視數(shù)學(xué)思想方法的滲透。

(4)抓住重難點、加強練習(xí)。

(五)學(xué)生學(xué)習(xí)易錯點分析:

(1)忽視單項式的定義,誤認(rèn)為式子 是單項式。

(2)忽視單項式系數(shù)的定義,誤認(rèn)為 的系數(shù)是4.

(3)忽視單項式的次數(shù)的定義,誤認(rèn)為3a的次數(shù)是0.

(4)忽視多項式的定義,誤認(rèn)為 是單項式。

(5)忽視多項式的定義,誤認(rèn)為 的次數(shù)是7.

(6)忽視多項式的項的定義,誤認(rèn)為多項式 的項分別為 .

(7)把多項式的各項重新排列時,忽視要帶它前面的符號。

(8)忽視同類項的定義,誤認(rèn)為2x3y4與-y4x3不是同類項。

(9)合并同類項時,誤把字母的指數(shù)也相加。

(10) 去括號時符號的處理。

(11)兩整式相減時,忽略加括號。

(六)教學(xué)建議:

(1)了解整式并學(xué)好合并同類項的關(guān)鍵是什么?

整式的加減法,實際上就是合并同類項,同類項的概念以及合并同類項的方法,是本章的重點,而同類項及其合并是以單項式為基礎(chǔ)的,所以,單項式的概念或意義是完成合并的關(guān)鍵。

(2)單項式與多項式有什么聯(lián)系與區(qū)別?

教材中先講單項式、后講多項式,然后概括為單項式、多項式統(tǒng)稱為整式,對于單項式的系數(shù),僅限于數(shù)字系數(shù)(單項式中的數(shù)字因數(shù)),這點務(wù)求仔細(xì)體會,切不可加以引申,而多項式?jīng)]有系數(shù);對于次數(shù),單項式的次數(shù)指,所有字母的指數(shù)之和,而多項式的次數(shù)是多項式中次數(shù)最高的項(單項式)的次數(shù),需要加以注意的問題是:單項式的系數(shù),包括它前面的符號,不要把常數(shù) 作為字母,單項式x的系數(shù)是1,且單獨一個數(shù)(零次單項式)或一個字母,也是單項式,對于0也是一個單項式;多項式的每一項都應(yīng)包含它前面得符號;單項式和多項式得分母中不能含有字母。

(3)學(xué)習(xí)合并同類項的方法;

先把同類項分別作上記號,然后根據(jù)合并同類項的法則進(jìn)行合并,合并后把多項式按某一字母降冪或升冪排列;當(dāng)多項式中同類項的系數(shù)互為相反數(shù)時,合并后為0;

(4)什么是合并同類項中要加以注意的“兩同”?

合并同類項是整式加減的基礎(chǔ),深入理解同類項的概念,又是掌握合并同類項的關(guān)鍵,教材中通過一個探究問題(三個填空題)的引入,進(jìn)行比較、歸納,從而得出判斷同類項的 “兩同”標(biāo)準(zhǔn):所含字母相同,并且相同字母的指數(shù)也相同,這樣的項叫做同類項。幾個常數(shù)項也是同類項,同類項至少有兩個,單項式不叫同類項。

(5)其它注意事項:

①整式中,只含一項的是單項式,否則是多項式。分母中含有字母的代數(shù)式不是整式,當(dāng)然也不是單項式或多項式。

②單項式的次數(shù)是所有字母的指數(shù)之和;多項式的次數(shù)是多項式中最高次項的次數(shù)。

③單項式的系數(shù)包括它前面的符號,多項式中每一項的系數(shù)也包括它前面的符號。

④去括號時,要特別注意括號前面是“-”號的情形。

(七)課時安排:

第1課時 單項式

第2課時 多項式

第3課時 整式的加減(1)------合并同類項

第4課時 整式的加減(2)------去括號

第5課時 整式的加減(3)------一般步驟

第6課時 整式的加減(4)------化簡求值

第7課時 數(shù)學(xué)活動

第8課時 復(fù)習(xí)課

七年級上冊整式的加減教案篇2

第1課時認(rèn)識立體圖形與平面圖形

教學(xué)目標(biāo)

1.可以從簡單實物的外形中抽象出幾何圖形,并了解立體圖形與平面圖形的區(qū)別;

2.會判斷一個幾何圖形是立體圖形還是平面圖形,能準(zhǔn)確識別棱柱與棱錐.

教學(xué)過程

一、情境導(dǎo)入

觀察實物及欣賞圖片:

我們生活在一個圖形的世界中,圖形世界是多姿多彩的.其中蘊含著大量的幾何圖形.本節(jié)我們就來研究圖形問題.

二、合作探究

探究點一:立體圖形

?類型一】 從實物圖中抽象立體圖形的認(rèn)識

例1 觀察下列實物模型,其形狀是圓柱體的是()

解析:圓柱的上下底面都是圓,所以正確的是d.

方法總結(jié):結(jié)合實物,認(rèn)識常見的立體圖形,如:長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等.

?類型二】 立體圖形的名稱與分類

例2 如圖所示為8個立體圖形.

其中,是柱體的序號為________,是錐體的序號為________,是球的序號為________.

解析:分別根據(jù)柱體,錐體,球體的定義可得結(jié)論,柱體為①②⑤⑦⑧,錐體為④⑥,球為③,故填①②⑤⑦⑧;④⑥;③.

方法總結(jié):正確理解立體圖形的定義是解題的關(guān)鍵.

探究點二:平面圖形的認(rèn)識

?類型一】 平面圖形的識別

例3 有下列圖形,①三角形,②長方形,③平行四邊形,④立方體,⑤圓錐,⑥圓柱,⑦圓,⑧球體,其中平面圖形的個數(shù)為()

a.5個 b.4個

c.3個 d.2個

解析:根據(jù)平面圖形的定義:一個圖形的各部分都在同一個平面內(nèi)可判斷①②③⑦是平面圖形.故選b.

方法總結(jié):區(qū)分平面圖形要記住平面圖形的特征,即一個圖形的各部分都在同一個平面內(nèi).

?類型二】 由平面圖形組成的圖形

例4 如圖所示,各標(biāo)志的圖形主要由哪些簡單的平面圖形組成?

解:(1)由5個圖形組成;

(2)由2個正方形和1個長方形組成;

(3)由3個四邊形組成.

方法總結(jié):解決這類問題的關(guān)鍵是正確區(qū)分圖形的形狀和名稱.

三、板書設(shè)計

1.立體圖形

特征:幾何圖形的各部分不都在同一平面內(nèi).

2.平面圖形

特征:幾何圖形的各部分都在同一平面內(nèi).

教學(xué)反思

本節(jié)利用課件展示圖片,聯(lián)系生活實際,激發(fā)學(xué)習(xí)興趣,調(diào)動學(xué)生的積極性.使學(xué)生以最佳狀態(tài)投入到學(xué)習(xí)中去.通過動手操作培養(yǎng)學(xué)生動手操作能力,同時也加深了學(xué)生對立體圖形和平面圖形的認(rèn)識.使學(xué)生在討論交流的基礎(chǔ)上總結(jié)出立體圖形和平面圖形的特征.

第2課時從不同的方向看立體圖形和立體圖形的展開圖

教學(xué)目標(biāo)

1.經(jīng)歷從不同方向觀察物體的活動過程,初步體會從不同方向觀察同一物體可能看到不一樣的結(jié)果;

2.能畫出從不同方向看一些簡單幾何體以及由它們組成的簡單組合體得到的平面圖形,了解直棱柱、圓柱、圓錐的展開圖或根據(jù)展開圖判斷立體圖形.(重點,難點)

教學(xué)過程

一、情境導(dǎo)入

?題西林壁》

蘇東坡

橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.

不識廬山真面目,只緣身在此山中.

詩中描繪出詩人面對廬山看到的兩幅不同的畫面,你能用簡潔的圖形把它們形象的勾勒出來嗎?

二、合作探究

探究點一:從不同的方向觀察立體圖形

?類型一】 判斷從不同的方向看到的圖形

例1 沿圓柱體上底面直徑截去一部分后的物體如圖所示,它從上面看到的圖形是()

解析:從上面看依然可得到兩個半圓的組合圖形.故選d.

方法總結(jié):本題考查了從不同的方向觀察物體.在解題時要注意,看不見的線畫成虛線,看得見的線畫成實線.

?類型二】 畫從不同的方向看到的圖形

例2 如圖所示,由五個小立方體構(gòu)成的立體圖形,請你分別畫出從它的正面、左面、上面三個方向看所得到的平面圖形.

解析:從正面看所得到的圖形,從左往右有三列,分別有1,1,2個小正方形;從左面看所得到的圖形,從左往右有兩列,分別有2,1個小正方形;從上面看所得到的圖形,從左往右有三列,分別有2,1,1個小正方形.

解:如圖所示:

方法總結(jié):畫出從不同的方向看物體的形狀的方法:首先觀察物體,畫出視圖的外輪廓線,然后將視圖補充完整,其中看得見部分的輪廓線通常畫成實線,看不見部分的輪廓線通常畫成虛線.在畫三種視圖時,從正面、上面看到的圖形要長對正,從正面、左面看到的圖形要高平齊,從上面、左面看到的圖形要寬相等.

七年級上冊整式的加減教案篇3

1、通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義;

2、了解什么是方程,什么是一元一次方程及什么是方程的解。

1、認(rèn)識列方程解決問題的思想以及用字母表示未知數(shù),用方程表示相等關(guān)系的符號化的方法

2、結(jié)合從實際問題中得出的方程,學(xué)會用“去分母”解一元一次方程,進(jìn)一步體會化歸的思想。體驗數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識到許多實際問題可以用數(shù)學(xué)方法解決,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。建立一元一次方程的概念。 問題與情境 師生活動 設(shè)計意圖

一、創(chuàng)設(shè)情境,展示問題:

問題1:世界最大的動物是藍(lán)鯨,一只藍(lán)鯨重124噸,比一頭大象體重的25倍少一噸,這頭大象重幾噸? 問題2: 章前圖中的汽車勻速行駛途經(jīng)王家莊、青山、秀水三地的時間如表所示,翠湖在青山、秀水之間,距青山50千米,距秀水70千米,王家莊到翠湖有多遠(yuǎn)? 地名 時間 王家莊 10:00 青山 13:00 秀水 15:00 教師展示問題,要求用算術(shù)解法,讓學(xué)生充分發(fā)表意見。算術(shù)方法:(124+1)÷25=5(噸)方程方法:可設(shè)大象重為`噸,則124=25`-1 學(xué)生獨立思考,小組交流,代表發(fā)言,解釋說明。問題1的算術(shù)解法:(50+70)÷2=60(千米/時) 605-70=230(千米) 問題1用算術(shù)法較容易解決,但問題2卻不容易解決,這樣產(chǎn)生矛盾沖突,使學(xué)生認(rèn)識到進(jìn)一步學(xué)習(xí)的必要性。 示意圖有助于分析問題。

二、尋找關(guān)系,列出方程

1、對于問題1,如果設(shè)王家莊到翠湖的路程是`千米,則: 路程 時間 速度 王家莊-青山 王家莊-秀水 根據(jù)汽車勻速前進(jìn),可知各路段汽車速度相等,列方程。

2、比一比:列算式與列方程有什么不同?哪一個更簡便?

3、想一想:對于問題1,你還能列出其他方程嗎?如果能,你根據(jù)的是哪個相等關(guān)系?你認(rèn)為列方程的關(guān)鍵是什么? 結(jié)合圖形,引導(dǎo)學(xué)生分析各路段的路程、速度、時間之間的關(guān)系,填寫表格。學(xué)生思考回答:

1、王家莊-青山(`—50)千米,王家莊-秀水(`+70)千米。

2、汽車以每小時(`-50)÷3千米的速度從王家莊到青山;以每小時(`+70)÷5千米的速度從王家莊到秀水。 讓學(xué)生體會:用算術(shù)方法解題時,列出的算式只能用已知數(shù),而列方程解題時,方程中既含有已知數(shù),又含有用字母表示的未知數(shù)。

三、定義方程,建立模型

1、定義:(板書)含有未知數(shù)的等式叫做方程。

練習(xí)一:判斷下列式子是不是方程,是的打“adic;”,不是的打“` ”.

(1)1+2=3 ( ) (4) ( ) (2) 1+2`=4 ( ) (5) `+y=2 ( ) (3) `+1-3 ( ) (6) `2-1=0 ( )

練習(xí)二:根據(jù)下列問題,設(shè)未知數(shù)并列出方程。

(1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?解:設(shè)正方形的邊長為` cm。那么依題意得到方程:_________. (2)一臺計算機已使用1700小時,預(yù)計每月再使用150小時,經(jīng)過多少月這臺計算機的使用時間達(dá)到規(guī)定的修檢時間2450小時?解:經(jīng)過`月這臺計算機的使用時間達(dá)到規(guī)定的修檢時間2450小時,那么依題意得到方程:_________. (3)某校女生占全體學(xué)生的52%,比男生多80人,這個學(xué)校有多少學(xué)生?解:設(shè)這個學(xué)校的學(xué)生為`,那么女生數(shù)為 ,男生數(shù)為 . 由此依題意得到方程:________________。 [議一議]:上面的四個方程有什么共同點? 2、定義:只含有一個未知數(shù)(元`),未知數(shù)的指數(shù)是1次,這樣的方程叫做一元一次方程。

練習(xí)三:判斷下列方程哪些是一元一次方程?(1) (2) (3) (4) (5)

3、方程的解:再看剛才列出的方程:4`=24,你能觀察出當(dāng)`=?時,4`的值正好等于24嗎。學(xué)生回答后總結(jié)方程的解和解方程的概念。

4、歸納分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系 列出方程,是用數(shù)學(xué)解決實際問題的一種方法。 (學(xué)生舉例并完成練習(xí)一) 師生合作,根據(jù)數(shù)量關(guān)系列出方程。

教師結(jié)合練習(xí)給出方程、一元一次方程的定義。 (我國古代稱未知數(shù)為元,只含有一個未知數(shù)的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右兩邊相等的未知數(shù)的值就是這個方程的解. 教師引導(dǎo)學(xué)生對上面的分析過程進(jìn)行思考,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的一般過程。

學(xué)生舉出方程的例子。 (學(xué)生獨立思考、互相討論,先分析出等量關(guān)系,再根據(jù)所設(shè)未知數(shù)列出方程) 判斷哪些是一元一次方程。 學(xué)生單獨計算,并填表。 學(xué)生得出解決實際問題的模型。

四、訓(xùn)練鞏固,課堂小結(jié)

1、根據(jù)下列問題,設(shè)未數(shù)列方程,并指出是不是一元一次方程。(1)環(huán)形跑道一周長400m,沿跑道跑多少周,可以跑3000m?(2)甲種鉛筆每枝0.3元,乙種鉛筆每枝0.6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?(3)一個梯形的下底比上底多2㎝,高是5㎝,面積是40㎝2,求上底。

2、小結(jié) 本節(jié)課你學(xué)到了哪些知識?哪些方法?

五、布置作業(yè)a、 必做 82頁,第1、2、3、題; b、 拓展阿凡提經(jīng)過了三個城市,第一個城市向他征收的稅是他所有錢財?shù)囊话胗秩种唬诙€城市向他征收的稅是他剩余錢財?shù)囊话胗秩种?,到第三個城市里,又向他征收他經(jīng)過兩次交稅后所剩余錢財?shù)囊话胗秩种?,?dāng)他回到家的時候,他剩下了11個金幣,問阿凡提原來有多少個金幣? c、課堂評價

1、 本節(jié)課的主要知識點是:

2、 你對列方程這節(jié)課的感受是:

3、 這節(jié)課我的困惑是: 解:(1) 設(shè)跑`周. 列方程400`=3000

4、 (2)設(shè)甲種鉛筆買了`枝,乙種鉛筆買了(20-`)枝.列方程 0.3`+0.6(20-`)=9 (3)設(shè)上底為` cm,下底為(`+2)cm.列方程 學(xué)生自己探索,獨立完成,集體訂正。 學(xué)生課后完成,并寫學(xué)習(xí)心得。

七年級上冊整式的加減教案篇4

一、三維目標(biāo)。

(一)知識與技能。

能運用運算律探究去括號法則,并且利用去括號法則將整式化簡。

(二)過程與方法。

經(jīng)歷類比帶有括號的有理數(shù)的運算,發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力。

(三)情感態(tài)度與價值觀。

培養(yǎng)學(xué)生主動探究、合作交流的意識,嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度。

二、教學(xué)重、難點與關(guān)鍵。

1、重點:去括號法則,準(zhǔn)確應(yīng)用法則將整式化簡。

2、難點:括號前面是—號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤。

3、關(guān)鍵:準(zhǔn)確理解去括號法則。

三、教具準(zhǔn)備。

投影儀。

四、教學(xué)過程,課堂引入。

利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?

五、新授。

現(xiàn)在我們來看本章引言中的問題(3):

在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為100t+120(t-0.5)千米 ①

凍土地段與非凍土地段相差100t—120(t-0.5)千米 ②

上面的式子①、②都帶有括號,它們應(yīng)如何化簡?

利用分配律,可以去括號,合并同類項,得:

100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60

七年級上冊整式的加減教案篇5

?第一部分】知識點分布

1、 一元一次方程的解(重點)

2、 一元一次方程的應(yīng)用(難點)

3、 求解一元一次方程及其在實際問題中的應(yīng)用(考點)

?第二部分】關(guān)于一元一次方程

一、一元一次方程

(1)含有未知數(shù)的等式是方程。

(2)只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。

(3)分析實際問題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。

(4)列方程解決實際問題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。

(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。

(6)求方程的解的過程,叫做解方程。

二、等式的性質(zhì)

(1)用等號“=”表示相等關(guān)系的式子叫做等式。

(2)等式的性質(zhì)1:等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性質(zhì)2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結(jié)果仍相等。

?第一部分】知識點分布

1、 一元一次方程的解(重點)

2、 一元一次方程的應(yīng)用(難點)

3、 求解一元一次方程及其在實際問題中的應(yīng)用(考點)

?第二部分】關(guān)于一元一次方程

一、一元一次方程

(1)含有未知數(shù)的等式是方程。

(2)只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。

(3)分析實際問題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。

(4)列方程解決實際問題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。

(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。

(6)求方程的解的過程,叫做解方程。

二、等式的性質(zhì)

(1)用等號“=”表示相等關(guān)系的式子叫做等式。

(2)等式的性質(zhì)1:等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性質(zhì)2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結(jié)果仍相等。

如果a=b,那么ac=bc;

如果a=b且c≠0,那么

(4)運用等式的性質(zhì)時要注意三點:

①等式兩邊都要參加運算,并且是作同一種運算;

②等式兩邊加或減,乘或除以的數(shù)一定是同一個數(shù)或同一個式子;

③等式兩邊不能都除以0,即0不能作除數(shù)或分母。

三、一元一次方程的解

1、解一元一次方程——合并同類項與移項

(1)合并同類項的依據(jù):乘法分配律。合并同類項的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近 ·=a(a 常數(shù))的形式。

(2)把等式一邊的某項變號后移到另一邊,叫做移項。

(3)移項依據(jù):等式的性質(zhì)1.移項的作用:通過移項,使含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于·=a(a是常數(shù)) 的形式。

2、解一元一次方程——去括號與去分母

(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。

(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。

(3)工作總量=工作效率×工作時間。

(4)工作量=人均效率×人數(shù)×時間。

四、實際問題與一元一次方程

(1)售價指商品賣出去時的的實際售價。

(2)進(jìn)價指的是商家從批發(fā)部或廠家批發(fā)來的價格。進(jìn)價指商品的買入價,也稱成本價。

(3)標(biāo)價指的是商家所標(biāo)出的每件物品的原價。它與售價不同,它指的是原價。

(4)打折指的是原價乘以十分之幾或百分之幾,則稱將標(biāo)價打了幾折。

(5)盈虧問題:利潤=售價-成本; 售價=進(jìn)價+利潤;售價=進(jìn)價+進(jìn)價×利潤率;

(6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。

(7)應(yīng)用:行程問題:路程=時間×速度;

工程問題:工作總量=工作效率×時間;

儲蓄利潤問題:利息=本金×利率×時間;

本息和=本金+利息。

(4)運用等式的性質(zhì)時要注意三點:

①等式兩邊都要參加運算,并且是作同一種運算;

②等式兩邊加或減,乘或除以的數(shù)一定是同一個數(shù)或同一個式子;

③等式兩邊不能都除以0,即0不能作除數(shù)或分母。

三、一元一次方程的解

1、解一元一次方程——合并同類項與移項

(1)合并同類項的依據(jù):乘法分配律。合并同類項的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近 ·=a(a 常數(shù))的形式。

(2)把等式一邊的某項變號后移到另一邊,叫做移項。

(3)移項依據(jù):等式的性質(zhì)1.移項的作用:通過移項,使含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于·=a(a是常數(shù)) 的形式。

2、解一元一次方程——去括號與去分母

(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。

(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。

(3)工作總量=工作效率×工作時間。

(4)工作量=人均效率×人數(shù)×時間。

四、實際問題與一元一次方程

(1)售價指商品賣出去時的的實際售價。

(2)進(jìn)價指的是商家從批發(fā)部或廠家批發(fā)來的價格。進(jìn)價指商品的買入價,也稱成本價。

(3)標(biāo)價指的是商家所標(biāo)出的每件物品的原價。它與售價不同,它指的是原價。

(4)打折指的是原價乘以十分之幾或百分之幾,則稱將標(biāo)價打了幾折。

(5)盈虧問題:利潤=售價-成本; 售價=進(jìn)價+利潤;售價=進(jìn)價+進(jìn)價×利潤率;

(6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。

(7)應(yīng)用:行程問題:路程=時間×速度;

工程問題:工作總量=工作效率×時間;

儲蓄利潤問題:利息=本金×利率×時間;

本息和=本金+利息。

七年級上冊整式的加減教案篇6

一、教材分析

(一)教材的地位和作用

方程是初等數(shù)學(xué)的基本知識,也是進(jìn)一步學(xué)習(xí)一元一次方程,二元一次方程組,一元一次不等式及一元二次方程的基礎(chǔ).方程在實際問題中的應(yīng)用,是中學(xué)階段應(yīng)用數(shù)學(xué)知識解決實際問題的重要開端,也是增強學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)意識的重要題材.本節(jié)教材主要起著承前啟后的作用,可以說是小學(xué)與中學(xué)內(nèi)容上的銜接點,方法上的分水嶺.

(二)教學(xué)內(nèi)容

“從算式到方程”新教材與原教材的顯著區(qū)別:方程這一部分內(nèi)容不是按照由定義到解法最后講應(yīng)用的純數(shù)學(xué)體系編排,而是首先從實際問題出發(fā),通過比較算術(shù)方法與方程求解的區(qū)別,體會方程的優(yōu)越性,讓學(xué)生認(rèn)識到從算式到方程是數(shù)學(xué)的一大進(jìn)步.然后再通過具體實際問題所列方程,介紹方程等概念.新教材的編寫更加體現(xiàn)了數(shù)學(xué)的應(yīng)用價值.

(三)教學(xué)重點難點

由于學(xué)生在小學(xué)階段已習(xí)慣用算術(shù)方法解決實際問題,對列方程不太熟練,為了防止學(xué)生仍停留在列算式解題的低層上,所以本節(jié)重點確定為:讓學(xué)生在討論問題、解決問題的過程中,比較列算式與列方程在分析數(shù)量關(guān)系上的區(qū)別及列方程時相等關(guān)系的建立.而本節(jié)中學(xué)生可能感到困難的仍是實際問題相等關(guān)系的建立.

二、目標(biāo)分析

依據(jù)課程標(biāo)準(zhǔn)的要求,確定以下目標(biāo):

(一)知識與技能目標(biāo)

1.了解方程等基本概念.

2.會根據(jù)具體問題中的數(shù)量關(guān)系列出方程.

(二)過程與方法目標(biāo)

經(jīng)歷從具體問題中的數(shù)量相等關(guān)系列出方程的過程,體會并認(rèn)識方程是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型,滲透數(shù)學(xué)建模的思想.

(三)情感目標(biāo)

讓學(xué)生進(jìn)一步認(rèn)識到方程與現(xiàn)實世界的密切關(guān)系,感受數(shù)學(xué)的價值.培養(yǎng)學(xué)生獲取信息,分析問題,處理問題的能力。

三、教法與學(xué)法分析

根據(jù)本節(jié)內(nèi)容與現(xiàn)實生活聯(lián)系較緊密的特點,教學(xué)中選取學(xué)生熟悉的、感興趣的背景材料,充分調(diào)動學(xué)生的學(xué)習(xí)熱情.并恰當(dāng)設(shè)計各種問題,讓學(xué)生在教師的引導(dǎo)下,通過小組討論、相互交流、動手操作、自主探索等活動,獲得知識,積累經(jīng)驗,體驗成功,積極推行自主學(xué)習(xí)、合作學(xué)習(xí)、探究學(xué)習(xí)等新的學(xué)習(xí)方式,努力完成教師和學(xué)生在教與學(xué)活動中角色的轉(zhuǎn)變.

四、教學(xué)過程分析

教學(xué)目標(biāo) ①進(jìn)一步理解用等式的性質(zhì)解簡簡單的(兩次運用等式的性質(zhì))一元一次方程

②初步具有解方程中的化歸意識;

③培養(yǎng)言必有據(jù)的思維能力和良好的思維品質(zhì).

教學(xué)重點 用等式的性質(zhì)解方程。

知識難點 需要兩次運用等式的性質(zhì),并且有一定的思維順序。

教學(xué)過程(師生活動) 設(shè)計理念

復(fù)習(xí)引入 解下列方程:(1)`+7=1.2; (2)

在學(xué)生解答后的講評中圍繞兩個問題:

① 每一步的依據(jù)分別是什么?

② 求方程的解就是把方程化成什么形式?

這節(jié)課繼續(xù)學(xué)習(xí)用等式的性質(zhì)解一元一次方程。 由于這一課時也是學(xué)習(xí)用等式的性質(zhì)解方程,所以通過復(fù)習(xí)來引入比較自然。

探究新知 對于簡單的方程,我們通過觀察就能選擇用等式的哪一條性質(zhì)來解,下列方程你也能馬上做出選擇嗎?

例1 利用等式的性質(zhì)解方程:

0.5`-`=3.4 (2)

先讓學(xué)生對第(1)題進(jìn)行嘗試,然后教師進(jìn)行引導(dǎo):

① 要把方程0.5`-`=3.4轉(zhuǎn)化為`=a的形式,必須去掉方程左邊的0.5,怎么去?

② 要把方程-`=2.9轉(zhuǎn)化為`=a的形式,必須去掉`前面的“-”號,怎么去?

然后給出解答:

解:兩邊減0.5,得0.5-`-0.5=3.4-0.5

化簡,得

-`=-2.9,、

兩邊同乘-1,得l

`=-2.9

小結(jié):(1)這個方程的解答中兩次運用了等式的性質(zhì)(2)解方程的目標(biāo)是把方程最終化為`=a的形式,在運用性質(zhì)進(jìn)行變形時,始終要朝著這個目標(biāo)去轉(zhuǎn)化.

你能用這種方法解第(2)題嗎?

在學(xué)生解答后再點評.

解后反思:

①第(2)題能否先在方程的兩邊同乘“一3”?

②比較這兩種方法,你認(rèn)為哪一種方法更好?為什么?

允許學(xué)生在討論后再回答.

例2(補充)服裝廠用355米布做成人服裝和兒童服裝,成人服裝每套平均用布3.5米,兒童服裝每套平均用布1.5米.現(xiàn)已做了80套成人服裝,用余下的布還可以做幾套兒童服裝?

在學(xué)生弄清題意后,教師再作分析:如果設(shè)余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5`米,根據(jù)題意,你能列出方程嗎?

解:設(shè)余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5米,根據(jù)題意,得

80`×3.5+1.5`=355.

化簡,得

280+1.5`=355,

兩邊減280,得

280+1.5`-280=355-280,

化簡,得

1.5`=75,

兩邊同除以1.5,得`=50.

答:用余下的布還可以做50套兒童服裝.

解后反思:對于許多實際間題,我們可以通過設(shè)未知數(shù),列方程,解方程,以求出問題的解.也就是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.

問題:我們?nèi)绾尾拍芘袆e求出的答案50是否正確?

在學(xué)生代入驗算后,教師引導(dǎo)學(xué)生歸納出方法:檢驗一個數(shù)值是不是某個方程的解,可以把這個數(shù)值代入方程,看方程左右兩邊是否相等,例如:把`=50代入方程80×3.5+1.5`=355的左邊,得80×3.5+1.5×50=280+75=355

方程的左右兩邊相等,所以`=50是方程的解。

你能檢驗一下`=-27是不是方程 的解嗎? 不同層次的學(xué)生經(jīng)過嘗試就會有不同的收獲:一部分學(xué)生能獨立解決,一部分學(xué)生雖不能解答,但經(jīng)過老師的引導(dǎo)后,也能受到啟發(fā),這比純粹的老師講解更能激發(fā)學(xué)生的積級性。

這里補充一個例題的目的一是解方程的應(yīng)用,二是前兩節(jié)課中已學(xué)到了方程,在這里可以進(jìn)一步應(yīng)用,三是使后面的“檢驗”更加自然。

解題的格式現(xiàn)在不一定要學(xué)生嚴(yán)格掌握。

課堂練習(xí) ① 教科書第73頁練習(xí) 第(3)(4)題。

② 小聰帶了18元錢到文具店買學(xué)習(xí)用品,他買了5支單價為1.2元的圓珠筆,剩下的錢剛好可以買8本筆記本,問筆記本的單價是多少?(用列方程的方法求解)

建議:采用小組競賽的方法進(jìn)行評議

小結(jié)與作業(yè)

課堂小結(jié) 建議:①先讓學(xué)生進(jìn)行歸納、補充。主要圍繞以下幾個方面:

(1) 這節(jié)課學(xué)習(xí)的內(nèi)容。

(2) 我有哪些收獲?

(3) 我應(yīng)該注意什么問題?

②教師對學(xué)生的學(xué)習(xí)情況進(jìn)行評價。

③思考題 用等式的性質(zhì)求`:-2`=-5`+7 引發(fā)競爭意識,提高自我評價和自我表現(xiàn)的機會,以達(dá)到激發(fā)興趣,鞏固知識的目的。評價包括對學(xué)生個人、小組,對學(xué)生的學(xué)習(xí)態(tài)度、情感投入及學(xué)習(xí)的效果方面等。

本課作業(yè) ① 必做題:教科書第73頁第4(1)、(2)、(4)題;補充:用等式的性質(zhì)解方程:①3+4`=17;②4- =3

② 選做題:教科書第73頁第4(3)題,第74頁第10題。

本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)

1、力求體現(xiàn)新課程理念:數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知

識經(jīng)驗基礎(chǔ)之上。教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會……學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者.本設(shè)計從新課的引人、例題的處理(包括解題后的反思)、反饋練習(xí)及小結(jié)提高等各環(huán)節(jié)都力求充分體現(xiàn)這一點.

2、在傳統(tǒng)的課堂教學(xué)中,教師往往通過大量地講解,把學(xué)生變成任教師“灌輸”的“容

器”,學(xué)生只能接受、輸入并存儲知識,而教師進(jìn)行的也只不過是機械地復(fù)制文化知識.新

課程的一個重要方面就是要改變學(xué)生的學(xué)習(xí)方式,將被動的、接受式的學(xué)習(xí)方式,轉(zhuǎn)變?yōu)閯邮謱嵺`、自主探索與合作交流等方式.本設(shè)計在這方面也有較好的體現(xiàn).

3、為突出重點,分散難點,使學(xué)生能有較多機會接觸列方程,本章把對實際問題的討論作為貫穿于全章前后的一條主線.對一元一次方程解法的討論始終是結(jié)合解決實際問題進(jìn)行的,即先列出方程,然后討論如何解方程,這是本章的又一特點.本設(shè)計充分體現(xiàn)了這一特點.