倍數(shù)教學(xué)反思通用6篇

時間:2023-03-24 作者:tddiction 教學(xué)計劃

只有不斷的撰寫教學(xué)反思,才能提高自己的教學(xué)質(zhì)量,教學(xué)反思能夠通過自身的教學(xué)實踐,總結(jié)出符合自己特點的教學(xué)模式,下面是范文社小編為您分享的倍數(shù)教學(xué)反思通用6篇,感謝您的參閱。

倍數(shù)教學(xué)反思通用6篇

倍數(shù)教學(xué)反思篇1

?3 的倍數(shù)和特征》一課是在學(xué)生自主探究2、5的倍數(shù)的特征的基礎(chǔ)上進(jìn)一步學(xué)習(xí),我從學(xué)生的已有基礎(chǔ)出發(fā),把復(fù)習(xí)和導(dǎo)入有機結(jié)合起來,通過2、5的倍數(shù)特征的復(fù)習(xí),設(shè)置了“陷阱”,引導(dǎo)學(xué)生進(jìn)行猜想3的倍數(shù)的特征可能是什么,從而引發(fā)認(rèn)知沖突,激發(fā)學(xué)生的求知欲望,經(jīng)歷新知的產(chǎn)生過程。

一、引發(fā)猜想,產(chǎn)生沖突。

前一課時,學(xué)生在發(fā)現(xiàn)2、5的倍數(shù)特征時,都是從個位上研究起的,所以在復(fù)習(xí)舊知時,我也特意強調(diào)了這一點。接下來我引導(dǎo)學(xué)生猜想3 的倍數(shù)特征是什么時,不少學(xué)生知識遷移,提出:個位上是3、6、9的數(shù)應(yīng)該是3 的倍數(shù);3 的倍數(shù)都是奇數(shù)。提出猜想,當(dāng)然需要驗證,很快就有學(xué)生在觀察百數(shù)表后提出問題:個位上是3、6、9的數(shù)只是有些是3的位數(shù),有些不是3的倍數(shù);有些偶數(shù)也是3的`倍數(shù),而有些奇數(shù)卻不是3 的倍數(shù)。學(xué)生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數(shù)表里找出3的倍數(shù),不少學(xué)生就開始了繁雜的計算,這個環(huán)節(jié)我給了他們時間慢慢去算,用意在于體會這種計算的不方便,從而去想有沒有更好的方法去判斷一個數(shù)是否是3 的倍數(shù)。

二、自主探究,建構(gòu)特征

找3 的倍數(shù)的特征是本節(jié)課的難點,我處理這個難點時力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索并掌握找一個3的倍數(shù)的特征的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。

在完成100以內(nèi)的數(shù)表中找出所有3 的倍數(shù)后,我引導(dǎo)學(xué)生觀察發(fā)現(xiàn)3的倍數(shù)的個位可以是0~9中任何一個數(shù)字,要判斷一個數(shù)是不是3的倍數(shù)不能和判斷2、5的倍數(shù)一樣只看個位,打破了學(xué)生的認(rèn)知平衡,然后我提出到底什么樣的數(shù)才是3的倍數(shù)這一問題。這個問題的解決需要借助計數(shù)器,于是我給學(xué)生準(zhǔn)備了簡易計數(shù)器,讓學(xué)生多次撥數(shù)后,觀察算珠的個數(shù)有什么共同的特點。反應(yīng)比較快的學(xué)生就有了發(fā)現(xiàn):所用的算珠個數(shù)都是3 的倍數(shù)。在學(xué)生提出這個猜想后,全班學(xué)生再一次進(jìn)行驗證第二個猜想,這個驗證也是在突破難點,學(xué)生在驗證中掌握難點。同時,我也讓學(xué)生對比了之前所用的方法,體驗這個新方法的快捷與簡便,讓學(xué)生的印象更深刻。這個教學(xué)環(huán)節(jié)在教師的引導(dǎo)下克服困難,解決了力所能及的問題,達(dá)到了新的平衡,開發(fā)了學(xué)生的創(chuàng)新潛能。

在教學(xué)過程中讓學(xué)生自主探索,雖然用了很多時間,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生的收獲會更多。

三、鞏固內(nèi)化,拓展提高。

在上述教學(xué)過程中,雖然每個同學(xué)只操作了一兩次,但是通過學(xué)生之間的合作交流,在教師的引導(dǎo)下,學(xué)生經(jīng)歷了一個典型的通過不完全 歸納的方法得出規(guī)律的過程。學(xué)生在這一過程中的體驗,無論是方法層面,還是思想層面均將對后繼的學(xué)習(xí)產(chǎn)生深刻的影響。

在初步感知3 的倍數(shù)的特征后,我提出了問題:一個數(shù),在計數(shù)器上撥出它,所用數(shù)珠的顆數(shù)是3的倍數(shù),它就是3的倍數(shù),對嗎?你是否認(rèn)為我們研究出的結(jié)論對所有的數(shù)都適用呢?這兩個問題的提出,意義在于通過“更大的數(shù)”和“任意找”兩方面,使學(xué)生深切體驗了不完全歸納法的這一要義,同時也培養(yǎng)了學(xué)生縝密思考問題的意識和習(xí)慣。

倍數(shù)教學(xué)反思篇2

本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識的基礎(chǔ)上進(jìn)行教學(xué)的。

課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

其次,厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。

本節(jié)課的不足之處:

1.練習(xí)設(shè)計容量少了一些,導(dǎo)致課堂有剩余時間。

2.對因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。

倍數(shù)教學(xué)反思篇3

?3的倍數(shù)的特征》的教學(xué)是五下數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中一個知識點,是在學(xué)生已認(rèn)識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出——根據(jù)個位數(shù)的特點就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。因而在《3的倍數(shù)的特征》的開始階段我復(fù)習(xí)了2、5的倍數(shù)的特征之后就讓學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補充到“個位上是0-9的任何一個數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個數(shù)的個位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。學(xué)生在經(jīng)歷了猜測、分析、判斷、驗證、概括、等一系列的數(shù)學(xué)活動后感悟和理解了3的倍數(shù)的特征,引導(dǎo)學(xué)生真正發(fā)現(xiàn):3的倍數(shù)各位上數(shù)的和一定是3的倍數(shù);不是3的倍數(shù)各位上數(shù)的和一定不是3的倍數(shù)。從而,使學(xué)生明確3的倍數(shù)的特征,然后進(jìn)行練習(xí)與拓展。這樣的探究學(xué)習(xí)比我們老師直接教給他們答案要扎實許多,之后的知識應(yīng)用學(xué)生就相應(yīng)比較靈活和自如,效果較好。

這節(jié)課結(jié)束后,我感覺最大的缺憾之處在最后的拓展練習(xí)上,由于自己事先練習(xí)下水沒有做足,所以誤導(dǎo)了學(xué)生。題目如下:“從3、0、4、5這四個數(shù)中,選出兩個數(shù)字組成一個兩位數(shù),分別滿足以下條件:1、是3的倍數(shù)。2、同時是2和3的倍數(shù)。3、同時是3和5的倍數(shù)。4、同時是2、3和5的倍數(shù)?!睂W(xué)生問要寫幾個時,我回答如果數(shù)量很多至少寫3個。呵呵,其實此題不需要如此考慮,因為它們的數(shù)量都有限。

倍數(shù)教學(xué)反思篇4

復(fù)習(xí)課是課堂教學(xué)的一種重要課型,一個階段教學(xué)之后,各種考試之前都必須進(jìn)行復(fù)習(xí)。復(fù)習(xí)在整個學(xué)習(xí)活動中是個十分重要的環(huán)節(jié),對夯實學(xué)生的基礎(chǔ)、培養(yǎng)和提高學(xué)生運用知識、解決問題的能力起著舉足輕重的作用。在復(fù)習(xí)過程中,學(xué)生不像學(xué)新課那么感興趣,容易產(chǎn)生厭倦情緒,出現(xiàn)復(fù)習(xí)效率低下的現(xiàn)象。因此,復(fù)習(xí)課要引導(dǎo)學(xué)生自己動手整理知識結(jié)構(gòu),把所學(xué)知識系統(tǒng)化、條理化,達(dá)到對所學(xué)知識牢固掌握,靈活應(yīng)用的目的。

下面是我在復(fù)習(xí)五年級上冊第九單元《倍數(shù)與因數(shù)》時,兩次不同的主要教學(xué)過程及本人對這兩次課的印象和反思。

第一次教學(xué)是這樣的:我先請學(xué)生回憶這個單元學(xué)習(xí)了哪些內(nèi)容;接著讓全體學(xué)生背誦了倍數(shù)、因數(shù)、偶數(shù)、奇數(shù)、合數(shù)、素數(shù)等概念和是2、3、5的倍數(shù)的特征;最后,出示了很多類型的習(xí)題,如找倍數(shù)與因數(shù)的,判斷素數(shù)與合數(shù)的,根據(jù)2、3、5的倍數(shù)特征填數(shù)的……。

整節(jié)課教師忙得不亦樂呼,幻燈片換了一張又一張,看起來似乎什么內(nèi)容都復(fù)習(xí)了;學(xué)生就像趕集一樣,做了這一題又忙哪一題,但收獲甚微。

這次是蘇教版教材的第一輪使用,我這個從事多年人教版教學(xué)的老教師雖在新課改培訓(xùn)中加大了新課程理念的學(xué)習(xí),但因多年產(chǎn)生的教學(xué)習(xí)慣而很難有所真正的改變,是基于傳統(tǒng)的數(shù)學(xué)課堂教學(xué),認(rèn)為單元復(fù)習(xí)就是由教師帶領(lǐng)學(xué)生把知識點再全部掃描一下,多設(shè)計一些習(xí)題,讓學(xué)生反復(fù)操練,只有讓學(xué)生當(dāng)上了熟練工,才能應(yīng)付考試。而這種炒冷飯的復(fù)習(xí)課,忽視了重點、難點,學(xué)生茫然地被教師牽著鼻子走,學(xué)習(xí)沒有了主動性,教學(xué)效果當(dāng)然不樂觀。

第二次教學(xué)時,我在復(fù)習(xí)課前先讓學(xué)生反思自己本單元的哪些知識掌握得比較好、哪些知識還掌握得不好并整理成書面材料。在批閱了學(xué)生整理的書面材料后,發(fā)現(xiàn)比較集中的問題是:寫一個數(shù)的因數(shù)寫不全,判斷一個數(shù)是否同時是2、3、5的倍數(shù)時有困難,對于一些特殊的素數(shù)、合數(shù)與奇數(shù)、偶數(shù)的特征掌握不好。因此,復(fù)習(xí)時,我先請每個學(xué)生任意寫一個兩位數(shù),寫完后觀察這個數(shù)有什么特點,并結(jié)合這一單元學(xué)到的概念說一說。然后出示了一道開放題:“誰能根據(jù)11、15、21、37、45、48、57、60、83、90這些數(shù)提與本單元的知識有關(guān)的問題?’學(xué)生思維活躍。有的提:“請判斷哪些是素數(shù),哪些是合數(shù),哪些是奇數(shù),哪些是偶數(shù)?”有的提:“請寫出這些數(shù)中每個合數(shù)的全部因數(shù)?!庇械奶幔骸斑@10個數(shù)中,哪些數(shù)同時是2和3的倍數(shù)?哪些數(shù)同時有因數(shù)3和5?哪些數(shù)既是2的倍數(shù)又有因數(shù)5?哪些數(shù)同時是2、3、5的倍數(shù)?”每次學(xué)生提出問題后,教師都及時組織學(xué)生完成練習(xí)。接著,教師在黑板上寫下48□,讓學(xué)生繼續(xù)思考:要使48□既有因數(shù)2,又是3的倍數(shù),□里應(yīng)該填多少?有學(xué)生說0、2、4、6、8都可以。有學(xué)生馬上反駁說,2、4、8都不可以,只能填0或者6。教師追問原因,相機復(fù)習(xí)被3整除的數(shù)的特征,接著出示問題:”如果要使□48既是2的倍數(shù),又是3的倍數(shù),□里應(yīng)該填多少?”學(xué)生討論完后,教師再引導(dǎo)學(xué)生思考:“觀察、比較48□和□48,同樣要填一個數(shù)字,使它既是2的倍數(shù),又是3的倍數(shù),為什么答案不同?”有了前面的對比練習(xí),學(xué)生終于明白在口填數(shù)的訣竅所在:既要考慮整除的特征,又要觀察數(shù)字所處的位置。這時,教師強調(diào)要靈活運用所學(xué)的知識解決問題。最后,教師要求每個學(xué)生拿出錯題集,先自己復(fù)習(xí),然后以同桌兩人為一組,出題考對方,教師巡視指導(dǎo)。

課堂上不時有學(xué)生間的爭論,有學(xué)生舉手請教老師、有同學(xué)之間的互助,每個學(xué)生學(xué)的都很積極主動,全然沒有復(fù)習(xí)課的單調(diào)枯燥之感。

這次的復(fù)習(xí)是基于學(xué)生對知識的理解水平,本著尊重學(xué)生的原則,以學(xué)生為主體,先學(xué)后教,抓住重點、難點,設(shè)計有層次的習(xí)題,舉一反三,調(diào)動學(xué)生的學(xué)習(xí)積極性,不求習(xí)題的多樣繁雜,但求激活每個學(xué)生的思維,引導(dǎo)學(xué)生在自學(xué)中學(xué)會發(fā)現(xiàn)、在傾聽中學(xué)會理解、在討論中學(xué)會思辨。

倍數(shù)教學(xué)反思篇5

這是自入職以來第一堂得到李老師指點的課。感覺得到李老師課堂上對學(xué)生信任。也讓我更深一步的體會到,只有學(xué)生自己找出來的規(guī)律,特點,才能理解的更透徹,掌握的更牢固,應(yīng)用起來更有效率。平日里,沒有給學(xué)生充分的時間,很多規(guī)律甚至是老師直接告訴學(xué)生的,雖然課堂教學(xué)的速度有了,但是效率并不高,后期教師要花費的時間更多。那才是真正的丟了西瓜撿芝麻!

下面從幾點來分析本節(jié)課

一、優(yōu)點

課堂掌控力不錯,教師的個人素質(zhì)也不錯。

二、不足

1、 是除不盡的。但是課堂上,我卻當(dāng)做了能除盡的。思考出現(xiàn)這個錯誤的原因,是自己對課堂、對學(xué)生的預(yù)設(shè)不足!

2、26是13和2的倍數(shù),13和2是26的因數(shù)------大家發(fā)現(xiàn)沒有,大的是倍數(shù),小的是因數(shù)!

我非常清楚,倍數(shù)、因數(shù)是有依存關(guān)系的,而不能單獨說,但是課堂上卻說出了“大的是倍數(shù),小的是因數(shù)”這樣一句有問題的話。失?。?/p>

歸結(jié)原因,還是課堂太想投機取巧。作為一個引導(dǎo)學(xué)生入門的老師,在知識的門口,真的不能有絲毫差池,更不能為了一時的省事,而為后面的教學(xué)買下禍根!

三、除了錯誤,還有很多做的復(fù)雜、不到位的地方。

1、開篇之時,復(fù)習(xí)自然數(shù),是為本節(jié)課作知識鋪墊用的,但是,問題中的“自然數(shù)有什么特點?”卻是一個設(shè)計失敗的問題。已經(jīng)學(xué)到高等數(shù)學(xué)的我,自然之道,自然數(shù)的特點到底有多龐雜!根本不是一兩句話說的清的,但是我卻問了這樣一個問題。

2、給定12張卡片列除法算式求商時,可以限定時間30秒,看說寫的又多又準(zhǔn)確。也就是說能全員參與的,就單獨。讓學(xué)生在數(shù)學(xué)作業(yè)紙上寫完后,可以抓條,然后教師可以挑選著在摘錄一些。這樣準(zhǔn)備充分,也可以為后面的分類打下堅實的基礎(chǔ)。

3、找個一個數(shù)的因數(shù)時,要先找,在訂正,最后讓學(xué)生說說做法。而后更正練習(xí),接著判斷,說方法。只有清楚的說出了方法,才能保證學(xué)生是真懂了。在這個過程中,還可以鼓勵學(xué)生總結(jié)一些自己的做法,比如用乘法找因數(shù),乘到幾就不乘了。用除法也是,除到幾就不除了?。ㄟ@個數(shù)的中間位置)

4、本節(jié)課最好的量是到會找一個數(shù)的因數(shù)就可以了,接著歸納一個數(shù)因數(shù)的特點部分就拖堂了。內(nèi)容不能很好的在一堂課中充分的展現(xiàn)!

一堂課教會了我很多,尤其是在教學(xué)方法上,李老師后來的引導(dǎo),讓我清楚的看到了學(xué)生的聰明,學(xué)生的觀察力!要相信學(xué)生------首先要給學(xué)生時間去觀察,去思考,去發(fā)現(xiàn)!否則,學(xué)生的思維永遠(yuǎn)得不到真正的發(fā)展!能力無法得到充分的提升。

倍數(shù)教學(xué)反思篇6

一、教材與知識點的對比與區(qū)別。

1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。

有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容,但教材在傳承以往優(yōu)秀做法的同時也進(jìn)行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分,還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心?!耙驍?shù)與倍數(shù)”的認(rèn)識與原教材有以下兩方面的區(qū)別:

(1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。

(2)“約數(shù)”一詞被“因數(shù)”所取代。

這樣的變化原因何在?教師必須要認(rèn)真研讀教材,深入了解編者意圖,才能夠正確、靈活駕馭教材。因此,我通過學(xué)習(xí)教參了解到以下信息:

學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法,對整除的含義有比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本教材中刪去了“整除”的數(shù)學(xué)化定義。

2、相似概念的對比。

(1)彼“因數(shù)”非此“因數(shù)”。

在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù)。而后者是相對于“倍數(shù)”而言的,與以前所說的“約數(shù)”同義,說“x是x的因數(shù)”時,兩者都只能是整數(shù)。

(2)“倍數(shù)”與“倍”的區(qū)別。

“倍”的概念比“倍數(shù)”要廣。我們可以說“1.5是0.3的5倍”,但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時,運用的方法與“求一個數(shù)的幾倍是多少”是相同的,只是這里的“幾倍”都是指整數(shù)倍。

二、教法的運用實踐

1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍,因此,對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求,而且給學(xué)生一個直觀的感受。“因數(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分?jǐn)?shù)無關(guān),與負(fù)數(shù)無關(guān)(雖沒學(xué),但有小部分學(xué)生了解)。同時強調(diào)——非0——因為0乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法,讓學(xué)生清晰明確。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫出乘法算式3*4=12,說明在這個算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。

2、在進(jìn)行延續(xù)性教學(xué)中,可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù),在板書要講究一個格式與對稱性,這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比,再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時應(yīng)該要注意的細(xì)節(jié),這對于學(xué)生良好的學(xué)習(xí)慣的培養(yǎng)也是很重要的。